
Per Ivar Bruheim

Per Ivar Bruheim
Development and validation of a
finite element software facilitating
large-displacement aeroelastic
analysis of wind turbines

Trondheim, June 2012

M
as

te
r's

 th
es

is

M
aster's thesis

Trondheim
, 2012

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

De
pa

rt
m

en
t o

f C
iv

il
an

d
Tr

an
sp

or
t E

ng
in

ee
rin

g

Acknowledgements

The work resulting in this thesis was supervised by Dr. Paul E. Thomassen (De-
partment of Civil Engineering, NTNU). I would like to thank him for involving
me in the ASHES project and the interesting field of wind energy technology. As
a result of his determination and vision, the further development of the ASHES
software will even be my full-time employment after graduating.

The software developed during this work was based on the finite element framework
developed by Dr. Jae Won Jang and Professor Gregory M. Miller at the University
of Washington. Their sharing of the source code has been greatly appreciated.

The last year’s work in the ASHES team has been a pleasant experience, and I
would like to thank also Loup Suja for his enthusiasm during this period.

I also want to thank Dr. Bjørn Haugen (Department of Engineering Design and
Materials, NTNU) for providing me with his doctoral dissertation and his valuable
comments.

Lastly, I want to thank my family for their support.

“In the middle of difficulty lies opportunity.”
–Albert Einstein

Per Ivar Bruheim Trondheim, June 2012

i

Abstract

(English)
This thesis establishes necessary theory for the geometrically nonlinear dynamic
analysis of spatial beam structures by the corotational formulation of finite el-
ements. By extending an existing framework that is capable of finite element
modeling as well as computing aerodynamic forces, a code is developed that facil-
itates the aeroelastic analysis of wind turbines, where the effects of large rotations
and deflections of the blades are captured. Verification of the code is carried out
first by basic tests, and then by comparing the computed response of a wind tur-
bine model with other codes for wind turbine design. Results are shown to be in
good agreement with other codes.

(Norsk)
Denne masteroppgaven etablerer nødvendig teori for geometrisk ikke-lineær dy-
namisk analyse av romlige bjelkekonstruksjoner ved å benytte en korotert formu-
lering i elementmetoden. Med utgangspunkt i et eksisterende rammeverk som er
i stand til å modellere med elementmetoden og å beregne aerodynamiske krefter,
utvikles det et program som gjør det mulig å utføre aeroelastisk analyse av vind-
turbiner, hvor effekter som skyldes store rotasjoner og utbøyninger er inkludert.
Verifisering av koden blir gjennomført først ved hjelp av enkle tester, så ved
å sammenligne den beregnede responsen av en vindturbinmodell med andre pro-
grammer for design av vindturbiner. Resultatene er funnet å være i god overens-
stemmelse.

Contents

1 Introduction 1
1.1 Principal objectives . 1
1.2 Overview of literature . 2
1.3 Outline of thesis . 3

2 Rotations in space 4
2.1 Introduction . 4
2.2 Rotation representations . 4

2.2.1 Rotation vector and axis-angle 4
2.2.2 Rotation tensor . 5
2.2.3 Euler angles . 5

2.3 Quaternions . 5
2.3.1 Quaternion algebra . 6

2.4 Conversions . 8
2.4.1 Axis-angle to quaternion . 8
2.4.2 Axis-angle to rotation tensor 9
2.4.3 Rotation tensor to rotation vector 9

2.5 Accumulation of rotations . 10
2.5.1 Using tensors . 10
2.5.2 Using quaternions . 10

2.6 Quaternion vs. tensor . 11
2.6.1 Storage and performance . 11
2.6.2 Round-off and normalization 11

2.7 Concluding remarks . 12

3 The nonlinear equation of motion 13
3.1 Introduction . 13
3.2 Geometric nonlinearities . 13

3.2.1 Non-conservative forces and load stiffness 14
3.2.2 A note on the updated and total Lagrangian formulations . 14

ii

3.3 Solution of the non-linear equation of motion 15
3.3.1 The dynamic nonlinear dynamic equation of motion 15
3.3.2 The Newmark-β integrators 15
3.3.3 Newton-Raphson iterations 17

3.4 Mass and stiffness tensors . 17
3.4.1 Material stiffness tensors . 18
3.4.2 Consistent mass tensors . 18
3.4.3 Geometric stiffness tensor 19

4 Corotational formulation of beam elements 20
4.1 Introduction . 20

4.1.1 Background . 20
4.1.2 Basic concept . 21
4.1.3 Configurations . 21
4.1.4 Directions and transformation 21

4.2 Extraction of deformations . 22
4.2.1 Extraction of deformational translations 23
4.2.2 Extraction of deformational rotations 24
4.2.3 Establishing the corotated base vectors 25

4.3 The tangent stiffness . 26
4.3.1 Consistent tangent stiffness 26
4.3.2 A modified tangent stiffness 26
4.3.3 Remarks on the consistent tangent stiffness 27

4.4 Summary of procedure . 27

5 Implementation of the application 30
5.1 Introduction . 30
5.2 Background of the framework . 30
5.3 Extensions . 31

5.3.1 The FrameElt class . 31
5.3.2 The FrameEltCorot class 32
5.3.3 Updating of DOFs . 32

5.4 Documentation of the framework 33
5.4.1 Documentation of the source code 33
5.4.2 Sequence diagrams . 33
5.4.3 Corotational procedures . 33

6 Validation of implementation 37
6.1 Static problems . 37

6.1.1 Cantilevered beam subjected to end force 37
6.1.2 Buckling in axial compression 38

iii

6.1.3 Cantilever subjected to end-moment 40
6.1.4 Forty-five degree bend . 41

6.2 Dynamic problems . 41
6.2.1 Centripetal force . 42
6.2.2 Energy conservation vs. element mass 43
6.2.3 Complex problem . 44

6.3 Discussion . 46

7 Application to aeroelastic analysis of wind turbines 47
7.1 Introduction . 47
7.2 Techniques for analysis of wind turbines 47

7.2.1 Modal approaches . 48
7.2.2 Finite element method . 49
7.2.3 Multibody systems . 49
7.2.4 Discussion . 49

7.3 The effects of large blade deflections 49
7.4 Modeling the OC4 reference turbine 50

7.4.1 Model overview . 51
7.4.2 Directions in the deformed state 53

7.5 Simulation results and comparisons 55
7.5.1 Startup simulation . 55
7.5.2 Comparison with other codes 56
7.5.3 Remarks . 58

8 Conclusion 60
8.1 Summary of thesis . 60
8.2 Conclusion . 61
8.3 Suggestions for further development 61

References 63

A Excerpt of C++ code 68
A.1 FrameEltCorot.h . 68
A.2 GQuat.h . 69
A.3 NewmarkDOF.h . 70
A.4 Nonlinear timestep function . 71
A.5 Corotational update procedure . 73
A.6 Accumulation of rotations . 74

iv

List of Figures

4.1 The initial, deformed, and corotated configuration of a 2D beam
element. The deformations are exaggerated. 22

5.2 Example of a documentation header for a function, in the Doxygen
syntax. The inlined todo and bug tags are also demonstrated. . . . 34

5.3 Newmark-β solution sequence in a linear analysis. 35
5.4 Newmark-β solution sequence in a non-linear analysis. 36
6.5 Beam with large deformations due to end load. 38
6.6 Lateral displacement of a 100 m long cantilevered beam subjected

to a concentrated force on its free end. 39
6.7 Beam after having been forced into a circular shape by an end-

moment. Note in 6.7a that the curvature of the elements themselves
is not shown graphically. 40

6.8 Forty-five degree bend subjected to a lateral load (red arrow). The
end furthest away is constrained against translations and rotations. 41

6.9 Displaced element at t = 1 due to lateral load of P = 1 · 103 (red
arrow). Note that the rotation of the constrained left end is actually
zero, but this is not showed graphically. 44

6.10 Strain, kinetic and total energy of a single consistent-mass element
subjected to a constant lateral force while t ≤ 1. 45

7.11 The finite element model of the full structure. The arrows on the
blades in (a) are the elements’ principal axes. 51

7.12 The shaft (1–2–H) and its connection to the tower as seen from the
side. 1–2–H is free to rotate about all axes in connections 1 and 2,
while the connection to the tower (T) is moment-stiff. H is the hub
center, i.e. the center of the rotor. 52

7.13 Layouts of blade meshes. 54
7.14 Rotor speed and applied generator torque from start-up to the

steady state. 56
7.15 Out-of-plane tip deflection and total thrust force on one blade from

start-up to the steady state. The vertical line marks the application
of the generator torque. 57

v

7.16 Out-of-plane tip deflection in the steady state, compared to other
codes. The present results are the highlighted curve. 58

7.17 Tip twist. 59
7.18 Tip twist in the steady state, compared to other codes. The present

results are the highlighted curve. 59

vi

List of Tables

2.1 Comparison of number of operations. 11
4.2 Configurations . 21
6.3 Position of beam tip (x, y, z). 42
6.4 Axial force vs. angular velocity . 42
7.5 Simulation settings . 55

vii

1 Introduction

1.1 Principal objectives

This thesis presents the background theory, development and validation of a tool
for analysis of structures undergoing large displacements, and its application to
the aeroelastic simulation of wind turbines.

The principal objectives of this thesis are three:

1. Devise and investigate a suitable method for geometrically nonlinear
analysis of beam structures for application to wind turbine rotors and
blades.

In a finite element context, there exist several approaches to the inclusion of non-
linear geometry, with the corotational formulation being one of them. In this work,
the corotational formulation is chosen as a fitting candidate due to attractive fea-
tures such as re-usability with other element types.

2. Develop and validate a software built on an existing framework that
facilitates the large-displacement analysis of wind turbines.

The demand for codes that correctly and effectively predicts the response of wind
turbines subjected to large displacements is clearly present. Today’s wind turbine
designs trend towards increased dimensions and scales, as well as lighter materials.
Longer blades increase the energy output, but at the same time they become more
slender and flexible. Thus, they are possibly subjected to moderate deflections.

An existing finite element framework will be extended to accommodate the non-
linear dynamic analysis of a wind turbine rotor, and numerical results are further
compared to similar results from other codes.

3. Compare the advantages and disadvantages of different methods and
algorithms for computing the dynamic response of wind turbines sub-
jected to arbitrary loads.

1

The behaviour of a typical wind turbine is determined by complex interactions be-
tween several components, which often are of a nonlinear nature. As the interest
of the analyst varies greatly—from transient, time-local effects as e.g. controller
behaviour; to the performance on a large time-scale, such as predicted power pro-
duction and expected damage due to fatigue—there is a diverse set of appropriate
methods. Existing software and tools for wind turbine design illustrate this, uti-
lizing methods ranging from classical frequency-domain methods to time-domain
methods based on finite elements or multibody systems, as well as using various
reduction and simplification techniques. A comparison will be given, with spe-
cial focus on determining the difference with the implementation of the previous
objective.

1.2 Overview of literature

The theory of corotational finite elements has been studied by several authors.
Simo and Vu-Quoc (1988) describe an isoparametric approach[42]. Crisfield (1990)
describes corotational 3D beam elements including a consistent tangent stiffness
[14]. Iura (1994) compares results using finite strain measures with corotated ele-
ments [22]. Crisfield and Shi (1994)[16] establish a scheme in a dynamic context,
which is also considered by Crisfield et al. (1997)[15]. Haugen (1994) thoroughly
presents different corotated formulations, while Haugen and Felippa (2005)[20]
develop a unified formulation. Shabana et al. (2007)[40] pursue the integration of
large deformation finite elements and mulitbody systems. References on the topic
of rotations are e.g. Argyris (1982)[2].

In the context of wind turbine design, Quarton (1998)[35] gives an historical over-
view over design techniques. Rasmussen et al. (2003) describe the present status of
aeroelastic modeling, including large blade deflections[36]. Kallesøe (2011) investi-
gates the effect of large blade deflections on stability[25]. Vollan and Komzsik
(2012) give an overview of computational techniques for rotor dynamics, but do not
mention the corotational formulation[47]. Different methods for applying aeroe-
lastic loads to finite elements are discussed by Knill (2005)[26]. For references on
wind turbine design and wind energy technology, see e.g. [7, 17, 30].

For references on finite elements and dynamics, see e.g. [4,9–11]. The finite element
framework that has been used as a basis for the present work has been described
by Miller (1991)[32], Miller and Rucki (1996 and 1998)[37, 38] as well as Jang
(2007)[23]. Later extensions related to wind turbines are described by Thomassen
et al. (2011)[43].

2

1.3 Outline of thesis

Chapter 2 presents theory and formulas for the treatment of rotations in space.
Chapter 3 discusses geometric nonlinearities and formulations, and details the com-
monly used Newmark-β incremental scheme. Chapter 4 presents the corotational
formulation of finite elements and suggests a modified tangent stiffness. In Chap-
ter 5, the background of the framework is outlined, and implementation specifics
are presented. Chapter 6 is devoted to the benchmarking and validation of the
implementation of corotated elements. Chapter 7 discusses different techniques for
wind turbine analysis and their differences, and further presents simulation results
of a full wind turbine model demonstrating the validity of the implementation.
Finally, Chapter 8 gives conclusions and recommendations for future work.

3

2 Rotations in space

2.1 Introduction

The correct treatment of rotations in space is essential to the analysis of large
deformations. An inherent property of finite (i.e. large) rotations in space is that
they are not additive, in contrast to displacements, which behave like vectors.
Hence, the motivation for this chapter is to establish theory and formulas necessary
for dealing with rotations in the formulation and implementation of corotated
elements in in later parts of this thesis.

As several ways of describing the rotation of a body in space exist, with each of
them having its advantages and disadvantages, a brief comparison will be given in
the following sections. The quaternion representation will be given special care due
to its attractive features. It is pointed out that several other representations exist,
but they will not be considered here. More detailed theory of quaternions can be
found in [13,41] and [46, Ch. 5] while rotation tensors are treated by Haugen and
Felippa (2005)[20].

2.2 Rotation representations

2.2.1 Rotation vector and axis-angle

The rotation vector or axis-angle representations are perhaps the most intuitive
ways of describing an arbitrary rotation in space. A rotation of a body in space
can always be stated as a rotation about a unit direction vector n by an angle θ.
This pair, consisting of a unit vector and a scalar, is referred to as the axis-angle
representation,

{n, θ} . (2.1)

4

Further, by multiplying the unit direction vector by the scalar-valued angle, the
information can be contained in the form of a single rotation vector:

θ = θn =

θx
θy
θz

 with θ = |θ| . (2.2)

This quantity can in an implementation be stored conveniently as a vector type.
Still, it should be stressed that this vector does not adhere to the usual rules of
vector algebra, as further discussed in Section 2.5.

2.2.2 Rotation tensor

A rotation tensor (i.e. a 3x3 matrix) is another possible representation of a rotation
in space.

A vector v is rotated by the rotation described by the tensor R to v′ by a pre-
multiplication:

v′ = Rv (2.3)

A rotation tensor is orthogonal—that is, R−1 = RT. Its content is commonly
computed by the use of direction cosines.

2.2.3 Euler angles

The Euler angle representation separates the total rotation into three: a pitch, roll
and yaw angle. No universal rule exists for the order of rotations, which is not
arbitrary, and they are also susceptible to gimbal lock when the pitch approaches
±90◦. Hence, they are problematic when arbitrary rotations and orientations are
involved, and are not suited for representing finite rotations.

The next section is devoted to the quaternion representation, including quaternion
algebra and its application to rotations.

2.3 Quaternions

Quaternions, although appearing somewhat abstract, are well-suited for represent-
ing rotations. The concept of quaternions was discovered by Sir William Rowan
Hamilton in 1843, in his attempt to find the 3D equivalent of complex numbers[41].

5

Although quaternions mathematically are based on complex numbers, their oper-
ations can be utilized without explicitly working with complex numbers. In this
section, the operations that are useful for rotations will be presented. Each opera-
tion is followed by a short C++ code section that demonstrates how the operation
might be implemented.

2.3.1 Quaternion algebra

A quaternion is basically a 4-tuple, which can be stated in multiple equivalent
ways

q =
[
x y z w

]
= xi + yj + zk + w ,

although, since a quaternion in essence has a vector part and a scalar part, writing
it as

q =
[
v w

]
(2.4)

clearly shows the vector–scalar nature.

The basic quaternion operations and properties are given in the following.

Addition

q + q′ =
[
v w

]
+
[
v′ w′

]
=
[
v + v′ w + w′

]
Quat q3 = q1.Plus(q2);
q2. PlusEquals (q1);

Multiplication

The product of two quaternions is given by

qq′ =
[
v w

] [
v′ w′

]
=
[
v× v′ + wv′ + w′v ww′ − v · v′

]
. (2.5)

Quat q3 = q1.Mult(q2);
q2. MultEquals (q1);

6

In general, qq′ 6= q′q.

The product of a quaternion q and a vector v, yields a new quaternion, and is
calculated in the same manner as (2.5) with the vector part of q set equal to v
and the scalar part to zero, i.e.

qv = q
[
v 0

]
(2.6)

Conjugation

q∗ =
[
v w

]∗
=
[
−v w

]
Quat q2 = q. Conjugate ();

Norm

The quaternion norm is given by

||q|| = qq∗ = v · v + w2 = x2 + y2 + z2 + w2 .

Note that in the literature, both the definition above and the square-root of it can
be found for the quaternion norm. This is important to take notice of, because
when normalizing a quaternion, one should divide the components by the square-
root expression. Still, when checking if a quaternion is normalized, the fact that
the norm is unity is sufficient, and avoids the square-root operation. This paper
will use the definitions in e.g. [41], with the magnitude being the square-root of
the norm, so that

|q| =
√
||q||

Scalar norm = q.Norm ();
Scalar magnitude = q. Magnitude ();

Inverse

q−1 = q∗

||q||

Quat q2 = q. Inverse ();

7

Normalization

q̂ = q
|q|

⇒ |q| = ||q|| = 1 (2.7)

q. Normalize ();

2.3.1.1 Rotating a vector by a quaternion

Given the normalized quaternion q, the vector resulting from applying the rotation
of q to the vector v1 is given by the vector part of the product[

v2 w
]

= qv1q−1 . (2.8)

This operation can conveniently be implemented as

Vector v2 = q. Rotate (v1);

2.4 Conversions

The conversion between different rotation representations is necessary in many of
the procedures in later chapters. Many conversion rules exist in the literature
for converting between the axis-angle, tensor and quaternion representations of
rotations. The conversion rules given here are the ones used in the implementation
of Chapter 5, and have seemed to give correct results and acceptable numerical
performance

2.4.1 Axis-angle to quaternion

Given the arbitrary axis-angle rotation θ =
[
θx θy θz

]T
, where the rotation angle

is θ = |θ|, the quaternion equivalent can be calculated by

v = sin
(
θ

2

)
· n
θ

and w = cos
(
θ

2

)
(2.9)

8

2.4.2 Axis-angle to rotation tensor

The Rodrigues formula gives a rotation tensor representing the rotation of an
axis-angle. Given the arbitrary axis-angle rotation θ =

[
θx θy θz

]T
, where the

rotation angle is θ = |θ| and the unit rotation axis vector is n =
[
n1 n2 n3

]T
=

θ

θ
, the rotation tensor is given by

R = I + N sin θ + N2 (1− cos θ) (2.10)
(2.11)

where N is the skew-symmetric tensor defined by

N = Spin (n) =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

and

N2 = nnT − I =

n1n1 − 1 n1n2 n1n3
n2n1 n2n2 − 1 n2n3
n3n1 n3n2 n3n3 − 1

 .
By combining these equations, an explicit form can be obtained.

2.4.3 Rotation tensor to rotation vector

For a small absolute rotation, the conversion from a rotation tensor R to the
equivalent rotation vector θ is given by the following algorithm.

First, compute

d1 = 1
2 (R32 −R23) ,

d2 = 1
2 (R13 −R31) , (2.12a)

d3 = 1
2 (R21 −R12) ,

Where index ij corresponds to column i, row j. The angle is then given by

sin θ =
√
d2

1 + d2
2 + d2

3 . (2.12b)

9

The rotation vector can finally be obtained as

θ = θ

sin θ
[
d1 d2 d3

]T
. (2.12c)

In a computer implementation, care must be taken when the angle approaches
0, which causes θ/ sin θ −→ 0/0. For small angles (e.g. θ < 10−8), the fraction
θ/ sin θ should therefore be set to unity [18, Eq. 2.3.20].

2.5 Accumulation of rotations

The accumulation of multiple finite rotations into a total rotation is essential when
e.g. rotation variables are incremented in a large-deformation analysis, and will be
treated in the following. With the Euler angle or rotation vector representations,
no general method exists, so a conversion to either a tensor or quaternion is nec-
essary.

2.5.1 Using tensors

If R1 and R2 are two arbitrary rotation tensors, and v is a vector in space, then
the vector

v′ = R2R1v

is the vector resulting from first applying the R1 and then the R2 rotation to v.
The compound rotation tensor can hence be stated as

R = R2R1 (2.13)

so that
v′ = Rv

2.5.2 Using quaternions

If the quaternions q1 and q2 represent two arbitrary rotations in space and v is a
vector, the new vector resulting from first rotating v by the rotation q1 and then
by q2 is given by (2.8):

v′ = q2

(
q1vq−1

1

)
q−1

2 . (2.14)

10

Hence, the total rotation is represented by the quaternion q = q2q1. Rotating a
vector by q is equivalent to first applying the rotation of q1 and then the rotation
of q2 to the vector. Finally, the total rotation can be applied to a vector by (2.8).

For correct results, the quaternions q1 and q2 must be normalized by (2.7) before
calculating the product, by dividing each component by the quaternion magnitude.

2.6 Quaternion vs. tensor

2.6.1 Storage and performance

A tensor requires the storage of 9 numbers, the quaternion 4, while 3 numbers are
sufficient for a rotation vector or the Euler angles. As previously mentioned, only
the tensor and quaternion is suitable in an implementation where the accumulation
of rotations is required. By counting the number of computer operations needed for
the accumulation of two rotations and the application of the rotation to a vector,
respectively, a crude estimate of their comparative efficiency is obtained. This
comparison is given in Table 2.1. It is observed that, while quaternions require

Table 2.1: Comparison of number of operations.
Representation Accumulation of Rotation of

rotations vector
Tensor 45 15

Quaternion 28 30

fewer operations than tensors for the accumulation of rotations, more are required
when the rotation is applied to a vector. Thus, the most efficient candidate for
representing rotations is not obvious.

2.6.2 Round-off and normalization

In a computer implementation, round-off errors will always be a concern when
rotations are accumulated through either tensor or quaternion products. Due to
these round-offs, a rotation tensor might loose its orthogonality property, leading
to it representing an invalid rotation, further producing erroneous results. Thus,
some procedure for orthonormalizing the tensor should be utilized, e.g. by the
Gram-Schmidt orthogonalization algorithm (see [44, p. 56])

11

A quaternion does not suffer from round-offs, as it is not subjected to a constraint
such as requiring orthogonality. The only requirement for a valid quaternion rep-
resentation is that it is of unit magnitude (i.e. normalized).

2.7 Concluding remarks

• Finite rotations can not be treated in a vectorial manner, but rather by the
use of tensors or quaternions.

• Euler angles and rotation vectors are not suited for accumulating arbitrary
finite rotations.

• Finite rotations are accumulated through products of either tensors or quat-
ernions. A rotation vector can be converted to a tensor or quaternion by
explicit formulas.

• Computer round-off may lead to the loss of orthogonality, demanding pro-
cedures for re-orthonormalizing the rotation tensor.

• No general conclusion can be made with regards to which is the “best” choice
of tensors and quaternions.

12

3 The nonlinear equation of
motion

3.1 Introduction

In later chapters, the theory of corotated beam elements and the implementation
in an existing finite element framework is presented. For the successful integration
of the corotated procedures with the existing solver functionality—namely the
Newmark-β scheme with Newton-Raphson iterations—a treatment of necessary
theory is given in this chapter. Additionally, the inclusion of this theory makes
referring to specific equations later simpler.

A brief comparison of methods for geometrically nonlinear analysis is here given.
Due to the importance in the presence of aerodynamic loads, and hence to the
analysis of wind turbine blades in Chapter 7, the load stiffness is also defined.
More theory can be found in the finite element literature, e.g. [4, 9, 11].

The final section presents the conventional material and geometric stiffness, as
well as the consistent-mass properties of the beam element, formulated in terms
of tensors—which is necessary for use in the finite element framework used in this
work.

3.2 Geometric nonlinearities

In a linear analysis, the equations of motion remain unchanged as the structure
deforms. At some point, however, the magnitude of the deformation will affect the
directions of applied forces and the element properties. Such effects are denoted
geometric nonlinearities.

13

3.2.1 Non-conservative forces and load stiffness

The work done by a conservative force on a body moving through space is inde-
pendent of the path taken. On the contrary, non-conservative forces does different
work when different paths are taken. A follower load is a typical non-conservative
load, with its direction following the rotation of the body that it acts upon. Aero-
dynamic forces, for instance, behave like follower loads.

Stated mathematically, an external conservative force f ext acting on a body with
displacement d has the property

∂f ext

∂d
= 0 when f ext is conservative (3.15a)

while for a non-conservative force, this gradient is in general non-zero. Hence, this
gradient will give rise to a term in the linearized equation of motion, namely a
load stiffness:

Kext = ∂f ext

∂d
6= 0 when f ext is non-conservative . (3.15b)

Using a variational notation, (3.15b) can equivalently be written as

δf ext = Kextδd (3.15c)

3.2.2 A note on the updated and total Lagrangian formu-
lations

In the updated or total Lagrangian formulation, a finite strain measure for the
element is usually employed. This strain measure gives a valid internal force state
of the element for arbitrarily large rigid body displacements, and for arbitrarily
large element strains. Although these two are equivalent, the equations of motion
in the updated Lagrangian method is expressed in terms of the current configura-
tion (i.e. using Eulerian coordinates), while the total Lagrangian method uses the
undeformed configuration as the reference[39, p. 118]. The element in either the
updated or total Lagrangian method will have to be developed and implemented
with basis in such strain measures.

14

3.3 Solution of the non-linear equation of motion

3.3.1 The dynamic nonlinear dynamic equation of motion

The dynamic equation of motion at time n+ 1 is given as

M
{
d̈
}
n+1

+ C
{
ḋ
}
n+1

+
{
f int

}
n+1
−
{
f ext

}
n+1

= {r}n+1 = 0 . (3.16)

where vector {r}n+1 is the residual, or out-of-balance force, which is 0 when equi-
librium is satisfied. By subtracting from (3.16) the equivalent equation of motion
at time n, an incremental form is obtained:

M
{

∆d̈
}
n

+ C
{

∆ḋ
}
n

+
{

∆f int
}
n
−
{

∆f ext
}
n

= {∆r}n = 0 , (3.17)

where
{

∆ḋ
}
n

=
{
ḋ
}
n+1
−
{
ḋ
}
n
etc. By a first-order linearization of the internal

and external forces, we get

{
∆f int

}
n

=
[
∂f int

∂d

]
n

{∆d}n =
[

Kint
]
n
{∆d}n (3.18a)

{
∆f ext

}
n

=
[
∂f ext

∂d

]
n

{∆d}n =
[

Kext
]
n
{∆d}n , (3.18b)

where
[

Kint
]
is called the consistent tangent stiffness and

[
Kext

]
is the load

stiffness. Inserting these linearized increments into (3.17) gives an equation where
only the accelerations and velocities at n+ 1 are unknown remains:

M
{

∆d̈
}
n

+ C
{

∆ḋ
}
n

+
([

Kint
]
n
−
[
Kext

]
n

)
{∆d}n = {∆r}n . (3.19)

In a non-linear context, Kint and Kext are in general functions of the displacement.
Equivalently, the gradients of the internal and external forces need not be linear.
Thus, due to the linearizations in (3.18), the equilibrium equation at time n+ 1 is
no longer exactly satisfied, giving a non-zero residual {r}n+1. In 3.3.3, a method
for eliminating this residual is presented.

3.3.2 The Newmark-β integrators

The Newmark-β or Newmark’s method is a commonly used implicit time-stepping
algorithm for dynamic analysis (not necessarily non-linear) in the finite element

15

method[4]. The method is actually a family of methods, with the two parameters
β and γ defining the characteristics of the algorithm.

The Newmark approximations are derived by discretizing the dynamic equation
of motion in time[31], yielding the following formulas for the increment in acceler-
ations and velocities from time n to n+ 1:{

∆d̈
}
n

= 1
β (∆t)2 {∆d}n −

1
β∆t

{
ḋ
}
n
−
(

1
2β

){
d̈
}
n

(3.20a)

{
∆ḋ

}
n

= γ

β∆t {∆d}n −
γ

β

{
ḋ
}
n
−∆t

(
γ

2β − 1
){

d̈
}
n
. (3.20b)

It is noted that knowledge about the displacement increment ∆dn is sufficient to
compute the increments in velocity and acceleration. A commonly used choice for
the parameters is β = 1/4 and γ = 1/2, implying the assumption of a constant
average acceleration between each time step.

Substituting these expressions into the equation of motion in (3.19) gives the final
incremental form of the implicit time-stepping scheme:[

Keff
]
n
{∆d} =

{
∆f eff

}
n

(3.21a)

where [
Keff

]
n

= 1
β∆t2 M + γ

β∆tC +
[
Kint

]
n
−
[
Kext

]
n

(3.21b){
∆f eff

}
n

= {∆r}n

+ M
[

1
β∆t

{
ḋ
}
n

+
(

1
2β − 1

){
d̈
}
n

]

+ C
[(
γ

β
− 1

){
ḋ
}
n

+ ∆t
(
γ

2β − 1
){

d̈
}
n

]
. (3.21c)

By defining

A = 1
β∆tM + γ

β
C and B = 1

2βM + ∆t
(
γ

2β − 1
)

C (3.22)

the effective load residual in (3.21c) simplifies to{
∆f eff

}
n

= {∆r}n + A
{
ḋ
}
n

+ B
{
d̈
}
n

(3.23)

It is noted that Keff acts as an effective tangent stiffness, and ∆f eff as an effective
load residual.

16

In general, the mass and damping terms would also be function of the displace-
ments. In that case, it should be noted that the equilibrium equation is stated
at time n + 1, and hence Mn+1 and Cn+1 should be used for the equation to be
correct.

Once the incremental displacement ∆d has been computed, the updated displace-
ments, velocities and accelerations can be computed by the increments in (3.20).

3.3.3 Newton-Raphson iterations

As showed in the previous section, the Newmark-β scheme gives a linear algebraic
system of equations which can be solved for the incremental displacement, dn+1.
In a linear context, the tangent stiffness remains unchanged with respect to dis-
placements, giving an exactly correct result for the displacement {d}n+1. However,
in a non-linear context, the tangent stiffness changes with the displacements, so
that the solution for the displacements at time n + 1 is not exactly correct (due
to the linearization in (3.18)). In order to control this error, the residual at time
n + 1 should hence be corrected by a set of iterations until a desired degree of
tolerance is reached.

The Newton-Raphson iteration scheme corrects the residual by repeatedly com-
puting a new incremental displacement and the corresponding residual forces—i.e.
the internal and external forces resulting from the iterated displacement. Its basic
procedure is given in e.g. Chopra (2006)[9].

3.4 Mass and stiffness tensors

The mass term M in the incremental equation of motion (Eq. 3.21) relates the
nodal accelerations to the inertia forces. For the element, the lumped mass and
consistent mass formulations are often employed. While a lumped mass formula-
tion leads to terms only on the diagonal, and hence no coupling between inertia
forces, a consistent mass formulation is derived with basis in the same shape func-
tions used for establishing the stiffness, and gives coupled inertia forces. Generally,
consistent masses produce more correct results at the expense of a more compu-
tationally demanding system of equations.

Conventionally the mass term on the element level for e.g. the beam element is
expressed in terms of a matrix, which relates accelerations and inertia forces in
terms of scalar degrees-of-freedom. In the present context, however, the element
properties are instead defined in terms of tensors for use in the present finite

17

element framework. These tensors relate vector quantities of acceleration to vector
quantities of inertia forces. A complete derivation of the expressions in this section
will not be given—rather they are established by inspection of tensor expressions
derived by other authors[34, Eq. 46].

3.4.1 Material stiffness tensors

The tensor relations for the material stiffness is given by[33]

Ked =

Kfu Kfθ −Kfu Kfθ

Kmu Kmθ −Kmu K̂mθ

−Kfu −Kfθ Kfu −Kfθ

Kmu K̂mθ −Kmu Kmθ

u1
θ1
u2
θ2

 =

f1
m1
f2
m2

 , (3.24)

where the individual tensors are given as

Kfu = 12E
L3 Î + AE

L
(n⊗ n) (3.25a)

Kmu = KT
fθ = 6E

L2 (t⊗ s− s⊗ t) (3.25b)

Kmθ = 4E
L

Î + JG

L
(n⊗ n) (3.25c)

K̂mθ = 2E
L
− JG

L
(n⊗ n) . (3.25d)

It is noted that Kmu and K̂mθ are symmetric tensors, and hence Ke remains
symmetric even when the transpose operator has been left out in (3.24).

3.4.2 Consistent mass tensors

The following addresses tensors expressions for consistent nodal masses of a lin-
ear Euler-Bernoulli beam element, as well as for the geometric stiffness. The
well-known, classical matrix equivalents can be found in e.g. the finite element lit-
erature, e.g. in [5, p. 141]. Instead of a formal derivation of these expression, they
are instead devised by inspecting the stiffness expressions (3.24) and (3.25), and
the matrix equivalents, accounting for the different symmetry of the mass matrix
compared to the stiffness matrix.

18

The nodal force–acceleration relation can, similarly to 3.4.1, be stated as
Mfu Mfθ M̂fu M̂fθ

Mmu Mmθ M̂mu M̂mθ

M̂
T
fu M̂

T
mu Mfu −Mfθ

M̂
T
fθ M̂

T
mθ −MT

fθ Mmθ

ü1
θ̈1
ü2
θ̈2

 =

f1
m1
f2
m2

 (3.26)

With M being the total mass of the element, we get the following consistent mass
tensors

Mfu = M
[1
3n⊗ n + 13

35 (s⊗ s + t⊗ t)
]

(3.27a)

M̂fu = M
[1
6n⊗ n + 9

70 (s⊗ s + t⊗ t)
]

(3.27b)

Mmu = MT
fθ = ML

[11
210 (t⊗ s− s⊗ t)

]
(3.27c)

M̂mu = M̂fθ = ML
[13
420 (t⊗ s− s⊗ t)

]
(3.27d)

Mmθ = M

[
L2

105 Î + Ip
3A (n⊗ n)

]
(3.27e)

M̂mθ = M

[
− L2

140 Î + Ip
6A (n⊗ n)

]
, (3.27f)

3.4.3 Geometric stiffness tensor

In a similar manner as in the previous sections, we establish the tensor expressions
equivalent to the ordinary geometric stiffness of a beam element. Let N be the
axial force, with a tensile axial force being positive, then

Kg
fu = N

36
30L (s⊗ s + t⊗ t) (3.28a)

Kg
mu = N

3
30 (t⊗ s− s⊗ t) (3.28b)

Kg
mθ = N

4L
30 (t⊗ t + s⊗ s) (3.28c)

K̂
g

mθ = −N L

30 (t⊗ t + s⊗ s) , (3.28d)

where it is implied that unmentioned tensor elements are zero.

The total element stiffness with the geometric stiffness included is then given as
K = Ke + Kg . (3.29)

19

4 Corotational formulation of
beam elements

4.1 Introduction

The corotational formulation has been chosen as the approach for geometrically
nonlinear analysis in this work, due to its attractive features. A neccessary theo-
retical treatment is presented in the following.

4.1.1 Background

The use of corotated elements for geometric nonlinear analysis has been studied in
several papers. Crisfield [14] gives an algorithm for 3D beam elements, although
only in a static context. Later, Crisfield gives a formulation for a beam element in
a dynamic context[15]. Haugen and Felippa [20] establish a unified formulation, for
arbitrary types of elements, and give a general expression for the consistent tangent
stiffness. Another important reference is is by Simo and Vu-Quoc (1986)[42]. It
is pointed out that the notations and derivations given in this section are mainly
based on the dissertation of Haugen [18].

The use of corotated elements is motivated by the assumption of small strains,
still allowing the large rigid-body displacements of the element. In contrast to
e.g. a total lagrangian (TL) formulation, the ordinary linear strain measure of the
element is conserved, where as a finite strain measure would have to be used in a
total lagrangian formulation. With the corotated formulation, one can effectively
re-use existing linear element libraries in a geometric nonlinear context.

Although most of the theory presented in this chapter is applicable to arbitrary
finite element types, the main focus will be on the 3D Euler–Bernoulli beam ele-
ment. Unless specified, all vectors are referred to in the global inertial coordinate

20

system.

4.1.2 Basic concept

The basic concept of corotated finite elements is to split the (current) total trans-
lation and rotation into a rigid-body part that produces no forces or moments in
the element, and a deformational part which produces the internal forces and mo-
ments of the element. At any point where information about the internal forces is
required, the corotated element’s position and orientation (which corresponds to
the rigid-body part) is established. This orientation is also referred to as a shadow
element or ghost element.

The element itself is assumed to be linear (i.e. small strains), so that the internal
force–displacement relation remains linear. It is noted that the corotated (or
shadow) element only exists for visualizing the corotated configuration, and is
never established as an element in the conventional sense.

4.1.3 Configurations

The initial configuration of the element is denoted C0, where there are no deforma-
tions. As the element deforms, it ends up in the deformed configuration, Cn. An
illustration of these configurations for a two-dimensional beam element, as well as
a possible placement of the corotated configuration, C0n is illustrated in Figure 4.1.

Table 4.2: Configurations
C0 Initial (e.g. when t = 0).
C0n Corotated. Is a rigid body motion of C0.
Cn Deformed. Is close to C0n.

4.1.4 Directions and transformation

In the undeformed configuration, C0, the orientation in space of an undeformed
beam element is defined by its three orthogonal principal directions, or base vec-
tors: n0, s0 and t0, where n0 is the initial direction of the element. The initial
orientation can hence be defined by the orthonormal transformation tensor

T0 =

nT
0

sT0
tT0

 , (4.30)

21

s0

n0

n
s

ũj

i j
C0

CnCn
C0n

θi

θj

X

Y

Figure 4.1: The initial, deformed, and corotated configuration of a 2D beam element.
The deformations are exaggerated.

which remains constant as the element deforms.

The base vectors of the corotated element, C0n, can similarly be collected into the
orthonormal transformation tensor

Tn =

nT

sT
tT

 . (4.31)

The determination of these corotated base vectors is further discussed in Sec-
tion 4.2.3.

A vector x in the global coordinate system can be transformed to a vector x̃ in
the element’s local (n, s, t) system by the transformation rule

x̃ = T0x and x = TT
0 x̃ . (4.32)

4.2 Extraction of deformations

Let the finite displacement in Cn of node i in Figure 4.1 is described by the
translation vector ui and the rotation tensor Ri. With knowledge about these
quantities for both nodes of the element, an essential procedure in the corotational
formulation is to extract from these the deformational translations and rotations
of the beam element at its two nodes.

22

4.2.1 Extraction of deformational translations

By decomposing the total translation into a rigid-body translation and a defor-
mational translation, the internal forces can be computed in terms of the latter
component. The position and orientation of the corotated element (or shadow
element), must therefore be established.

For arbitrary elements, some best-fit procedure should be used. For the beam
element considered here, several placements are possible:

• On the straight line between the nodes.

• On a line giving no deformational rotation in one of the nodes.

• With its center of mass coinciding with the center of mass of the deformed
element.

The first method, which corresponds to Figure 4.1, seems to be the simplest, and
has been used in the present work. This gives an axial deformational translation
only at node j, which is expressed in the element’s local coordinate system as:

ũd =
[
ũ 0 0

]T
at node j (4.33)

ũd =
[
0 0 0

]T
at node i (4.34)

Note that the axial deformation could also have been divided equally between the
two nodes, however, this would give a completely equivalent internal force of the
element, as the relative displacement of the two nodes determines the axial force.

For a node having a translational displacement of u, the displaced position is given
by

x = x0 + u ,

The length of the deformed beam element is simply the distance between the two
nodes, ln = |xj − xi| , giving an axial elongation of

ũl = ln − l0 ,

where l0 is the initial element length. To avoid numerical problems, the mid-point
formula [14, Eq. (26)] should be adopted:

ũl = 2
ln + l0

[
(xj − xi) + 1

2 (uj − ui)
]T

(uj − ui) . (4.35)

Transforming the local axial displacement to global coordinates leads to
ud = TT

n ũd , (4.36)
with ũd from (4.35) and Tn from (4.31).

23

4.2.2 Extraction of deformational rotations

In addition to the deformational translations, the deformational rotations must
also be extracted, so that the internal elastic moments can be computed. As
detailed in [18], the orientation of the shadow element (i.e. C0n) can be obtained
by a rigid-body rotation of the previously defined initial base vectors of the element:

n = R0nn0

s = R0ns0

t = R0nt0 (4.37)

where subscript 0n indicates that the tensor rotates the base vectors from the
initial to the corotated configuration. These expressions can be expressed more
compactly in terms of the tensors in equations 4.30 and 4.31:

TT
n = R0nTT

0 , (4.38)

which by post-multiplying by T0 gives

R0n = TT
nT0 . (4.39)

Further, if we assume that the total rotation of the node from C0 to Cn can be
expressed by a rotation tensor, R, we proceed by decomposing this rotation into a
rigid-body component and a deformational component. In contrast to translational
components, which are additive, the total rotation will have to be decomposed into
a product of a rigid-body rotation tensor and a deformational rotation tensor:

R = RdR0n , (4.40)

where the order of multiplication used here–which is not arbitrary–is in agreement
with other authors[18].

The rigid-body rotation from the initial to the corotated configuration (i.e. R0n)
was defined in (4.39), which substituted into the previous equation leads to the
final expression for the deformational rotation at a node:

Rd = RRT
0n = RTT

0 Tn . (4.41)

With Figure 4.1 in mind, Rd for node j would be the tensor that describes a
rotation about the out-of-plane axis by the angle θj, and similarly for node i
(although a negative rotation). As seen in (4.41), if R = R0n then R = I,

24

demonstrating that a pure rigid body motion of the element correctly leads to no
resulting deformational rotations.

Due to the assumption of small strains in the corotational formulation, the rotation
represented by Rd is also small. Due to this fact, the tensor can be converted to
a rotation vector as in 2.4.3. Such a conversion is necessary e.g. when computing
the interal moments, as the typical linear force–displacement relation (i.e. stiffness
tensor) expresses the nodal moment in terms of the rotation vector (see (3.24)).

4.2.3 Establishing the corotated base vectors

As already mentioned, for arbitrary element types, the position and orientation
of C0n should be determined by som best-fit procedure. In this work, where only
beam elements are considered, a simple geometric consideration is sufficient for
identifying the directions of the corotated base vectors, which collectively define
the transformation tensor Tn.

By establishing the orientation of C0n by placing the shadow element on the
straight line between the deformed positions of the two nodes—xi and xj, respect-
ively—the direction of the corotated element can be easily computed as

n = xj − xi
||xj − rj||

. (4.42a)

Let the current total rotations of node i and j of the element be Ri and Rj,
respectively. In general, the two rotations and their corresponding tensors need
not be equal, due to the deformation of the element. By rotating the initial base
vector t0 of the element by the average rotation of the two nodes, an approximate
direction of the corotated base vector t is established:

t∗ = Rit0 + Rjt0 . (4.42b)

In general, t∗ is not perpendicular to n, so by first computing the s base vector by
the cross-product

s = t∗ × n
|t∗ × n|

, (4.42c)

and then finally t as

t = n× s , (4.42d)

the tri-orthogonality of the base vectors is maintained. It is observed that this
method requires t∗ and n not to be parallel, although these would only be par-
allel if the rotation of the two nodes relative to eachother is very large, and the
deformations of the element has here been assumed to be small.

25

4.3 The tangent stiffness

4.3.1 Consistent tangent stiffness

As shown in (3.19) and (3.18), the consistent tangent stiffness of the element is
the gradient of the internal forces. For the corotational formulation of an arbitrary
element, Haugen derives the consistent tangent stiffness by taking the variation of
all terms occuring in the expression of the element’s internal forces, leading to

Kint = KGR + KGP + KGM + KM , (4.43)

where the individual terms are named as following: KGM is the moment-correction
geometric stiffnes, KGP is the equilibrium-projection geometric stiffness, and KGR
is the rotational geometric stiffness, while KM is the material stiffness. Due to
complexity, a detailed description of these terms is outside the scope of this thesis.

Bergan et al., on the assumption that the deformational rotations are small and
that the axial elongation of the element is negligible with respect to the equilbrium
of the element, disregard terms KGP and KGM from (4.43). Also, these assump-
tions lead to KM = Ke, i.e. the linear element stiffness. The resulting formulation
has been termed the Consistent co-rotated formulation, or abbreviated to (C).

4.3.2 A modified tangent stiffness

As already mentioned, in circumstances where deformations are very small, terms
of the consistent tangent stiffness may be neglected. Another simplification is
here suggested, namely that also the rotational geometric stiffness KGR be dis-
regarded. Furthermore, the conventional linear geometric stiffness of the beam,
giving stiffening due to axial strains, is included, giving

Kint = Ke + KG , (4.44)

with the last term defined in (3.28d). It is pointed out that this modification (due
to dependency on the axial force) leads to the element no longer being considered
linear, at the advantage of capturing the stiffening or softening effect of a beam
due to axial force. To achieve convergence towards the correct state of equilbrium,
the stiffness in (4.44) must also be used in the computation of the interal forces.
Since KG is a function of the axial force, the “most recent” value of the axial force
should be used in the computation.

The suggested tangent stiffness is utilized in the implementation presented later in
this thesis. It is stressed that no formal justification is given for this modification,

26

however, numerical results in later chapters show that the formulation behaves
well. A similar tangent stiffness has been used by Hsiao and Jang with good
results [21].

4.3.3 Remarks on the consistent tangent stiffness

To achieve a true second order convergence rate, the consistent tangent stiffness
should be used in an incremental-iterative scheme. However, a sufficient rate of
convergence can often be achieved with a simplified tangent stiffness. Although
utilizing the full consistent stiffness minimizes the number of iterations needed
for convergence, the efficiency in terms of running time need not be minimized
due to more demanding operations, e.g. in the assembly of the tangent stiffness.
Also, more effort of the programmer is required when implementing a complicated
consistent stiffness compared to a simpler tangent stiffnes.

A final remark is that a converged solution is indeed equally correct (with respect
to the internal forces), independent of the choice of the tangent stiffness.

4.4 Summary of procedure

In the previous sections, the necessary procedures for extracting the deformational
state of the element was established. Here, a summary of the complete procedure
in the context of an incremental solution process will be given in order to clearify
the flow of the algorithm.

The tensor representation of rotations has been used consistently previously in
this chapter, but other representations can be employed with equivalent results.
As shown in 2.5.2, the decomposition of rigid body and deformational rotations
in (4.40) could similarily be carried out with the use of quaternions instead of
tensors.

Consider one single element of an arbitrary finite element mesh. The initial princi-
pal axes/base vectors of the element are n0, s0 and t0, and these base vectors col-
lectively define the element’s initial transformation tensor T0, according to (4.30),
which should be stored during the analysis process. Further, the initial position
of each node is x0 and the initial translations and rotations are assumed zero.

Initialization (C0).

27

For each node, set and store

u := 0 and R := I . (4.45)

For each element, set

T0 :=

nT
0

sT0
tT0

 and Rd := I (4.46)

Incrementing translations and rotations.
An incremental-iterative solver working on global coordinates typically solves for
the increment (or iterate) in translations and rotations for each node. For a single
node and arbitrary increment, these increments:

∆u =
[
∆u ∆v ∆w

]T
(4.47)

∆θ =
[
∆θx ∆θy ∆θz

]T
(4.48)

The accumulation of translations is performed by adding the displacement incre-
ment ∆un to the current displacement vector. On the other hand, the increment
in rotation, usually given by the solver as the rotation vector ∆θn, can not be
added to the current rotational displacement. Instead, the current rotational dis-
placement should be stored as a tensor or quaternion (per node), and updated
with the incremented rotation (converted to a tensor or quaternion), as outlined
in Sec. 2.5. If a tensor representation is used for the total rotation, the tensor that
represents the increment in (4.48) is computed by the Rodrigues formula in (2.11).
Alternatively, using quaternions, the rotation increment is converted by (2.9).

Let R∆ = R∆ (∆θ) be the tensor representing the increment in rotations, given
by (2.11), then for each node the position and rotation is updated by

u := u + ∆u (4.49)
R := R∆ R . (4.50)

Extraction of deformations.
In a nonlinear context, equilibrium iterations are usually performed in order to
eliminate the out-of-balance forces, as discussed previously in Sec. 3.3.3. Such a
procedure requires the computation of the current internal forces of the element,
and hence requires the extraction of the deformational translations and rotations
of the element. The necessary steps has been detailed in Sec. 4.2. It is noted

28

that such a computation is performed on an per-element basis, contrary to the
per-node incrementation of displacements.

For each element, compute and store the corotated orientation defined by the ten-
sor Tn, by (4.42) and (4.31). Extract the deformational translations and rotations
at the two nodes, as shown in Sec. 4.2.

Computing internal forces
By converting the tensor representations of the deformational rotations at the two
nodes to vectors by (2.12), the internal forces are given by the linear stiffness rela-
tion of the beam element. Let uid, ujd ,θ

i
d , andθjd be the deformational translations

and rotations at nodes i and j of the element. The internal forces and moments
are then given by:

f i
mi

f j
mj

 = K

uid
θid
ujd
θjd

 , (4.51)

where K is the linear stiffness of the element in (3.24), computed in the orientation
of the corotated configuration (n, s, t). If the geometric stiffness is included, as
suggested in (4.44), this term should also be included here.

29

5 Implementation of the
application

5.1 Introduction

One of the main objectives of this work has been to develop a tool that facilitates
the large-displacement analysis of wind turbines. The chosen approach was to use
an existing framework as the starting point, and to modify and extend the source
code with the necessary functionality. Due to previous developments having been
carried out entirely on object-oriented principles and with extensibility in mind,
such an approach was deemed feasible. This chapter presents the background of
the framework, as well as extensions made.

5.2 Background of the framework

The framework used here was developed in C++ on object-oriented principles, as
described by Miller[32] and Miller and Rucki (1996, 1998)[37,38] and further by the
work of Jang[23]. In recent years, Thomassen et al. worked on the implementation
of specialized code for the analysis of wind turbines[6, 43].

The framework, on the core level, provides functionality for the creation of finite
element meshes and the static and dynamic time-simulation of the response. In-
stead of the classical approach, where matrices and scalars are used for e.g. stiffness
and displacements of degrees-of-freedom, the underlying scalars are encapsulated
within tensor and vector classes, allowing for formulating element properties in a
coordinate-free manner[33]. Further, an important focus has been the development
of a graphical user interface (GUI) that is closely coupled to the underlying frame-
work, providing for an interactive, real-time user experience. All code is written
in C++ on object-oriented principles.

30

The work by Thomassen, Suja, Bruheim and Frøyd[43] provided new features for
the analysis of wind turbine design, such as the blade element momentum theory
(BEM) that computes aerodynamic forces on the blades, flexible settings for the
input of data to the code, as well as improvements to the GUI. Additionally,
functionality for obtaining the eigenvalues of the model was implemented[6].

5.3 Extensions

To facilitate the implementation of corotated beam elements, a large set of exten-
sions and modifications to the framework has been made. The most important
are:

• Extension of the FrameElt class to a sub-class FrameEltCorot. Since the
logic of the corotated element is different than the linear element, e.g. with re-
spect to computation of internal forces and computation of stiffness and mass
tensors, functions for such computations are overridden in FrameEltCorot.

• Definition of tool funtions for converting between e.g. rotation tensors and
vectors.

• Modification of the DOF class, NewmarkDOF, to accommodate the corota-
tional update procedure.

• Implementation of the GQuat class, which provides support for quaternion
operations.

• Definition of the Sensor class, that provides the real-time display of relevant
quantities and recording/outputting data from simulations. Implementation
of e.g. SensorNode that records e.g. nodal displacements and velocities.

• Improvements of the graphical user interface, e.g. visualizing the deformed
blades during real-time analysis.

It is noted that the term “frame” is used for the beam element classes. In Appendix
A, excerpts from the source code is given for classes and functions related to the
corotational procedures and the nonlinear solution process.

5.3.1 The FrameElt class

The existing implementation of the linear beam element is represented by the
FrameElt class. Some necessary extensions and modifications made to this class
were:

31

• Support for using consistent masses and including the geometric stiffnes when
installing these in the DOFs in InstallMCK().

• The ComputeStiffness() function, giving the possibility for computing the
set of stiffness tensors for the element in different coordinate systems, e.g. in
element-local or global, in either the undeformed or deformed configuration.
Also, the inclusion of the geometric stiffness could be toggled on or off.

• The ComputeMass() function. Similar to the previous modification, but for
computing the mass tensors.

• The GetMomenta() function, computing the nodal momenta, i.e. the product
of the nodal masses and velocities.

It should be noted that added functions were also declared as virtual functions in
the top-level element class, Element, making the implementation of elements easy.

5.3.2 The FrameEltCorot class

The FrameEltCorot class inherits from the FrameElt class, and overrides necces-
sary functions of FrameElt for the corotational procedures. In the existing classes
GTensor and GSymmTensor, necessary functions were provided for e.g. tensor mul-
tiplications etc.

• GetElasticForces() and GetStrainEnergy(), which for the corotated ele-
ment must compute the internal forces and energy in terms of the deforma-
tional translations and rotations at the nodes.

• UpdateResistingForce(), called during equilbrium iterations, which must
perform the corotational extraction of deformational translations and rota-
tions and establish the base vectors before computing the internal forces and
applying these to the DOFs.

5.3.3 Updating of DOFs

For the incorporation of corotated elements, procedures that update displacements,
velocities and accelerations of the DOFs must be modified. Additionally, for linear
elements, the usual additive update of variables should be used. For this, each
Node stores a flag that signalizes if it is connected to a corotated element. See also
the source code given in A.6.

32

5.4 Documentation of the framework

5.4.1 Documentation of the source code

The free software package Doxygen[45] provides functionality for automatically
generating documentation of the source code in the form of html pages, by parsing
the entire source code structure of the application. When working on the same code
in a team, such documentation is obviously very helpful when e.g. interfacing with
others’ classes. This documentation might also serve as the main documentation
library for a project involving many developers. In the context of wind turbine
design, Quarton points out that a well-documented software is essential for the
transition from a research code to a design tool[35, p. 19].

In the present work, this package has been successfully used for documenting all
classes, including member variables and member functions. Due to active parallel
development, the source code resides on a remote server with version control,
which makes it possible to always have available an updated documentation of the
current state of the source code.

In Figure 5.2, the syntax for documenting a member function is demonstrated.

5.4.2 Sequence diagrams

These figures illustrate the interaction between the different objects during the
solution process. In Figure 5.3, the solver sequence is shown for a dynamic linear
analysis, while Figure 5.4 shows a nonlinear analysis where equilibrium iterations
are performed.

5.4.3 Corotational procedures

As seen in Figure 5.3, the Element has the responsibility of computing the internal
forces and applying them to the DOFs during equilbrium iterations, through the
UpdateResistingForce function. For the corotated element, this procedure must
establish the corotated configuration and extract the internal deformations, as
detailed in previous chapters.

33

/**
* Calculates the nodal loads consistent with the current
* displacement of the nodes/DOFs.
*
* Only the elastic forces are considered . The function
* uses this element ’s current stiffness tensor members
* for calculating , and does not consider the stiffness
* properties of the DOFs and their interactions .
*
* All results are given in global coordinates . The function
* has been tested and checked against basic beam formulas .
*
* @param fi Will be modified to the left force vector .
* @param fj Will be modified to the right force vector .
* @param mi Will be modified to the left moment vector .
* @param mj Will be modified to the right moment vector .
* @param NRiter (optional) If set to true , the displacement
* is taken as the sum of the GetPrevDispl () and GetDisplTimestep (),
* which will be the current accumulated displacement during
* N-R iterations . The default is false , and the (usual) current
* displacement of the DOFs will be used.
*
* @author Per Ivar Bruheim
*/

void FrameElt :: GetElasticForces (GVector &fi , GVector &fj ,
GVector &mi , GVector &mj , bool NRiter) const

{
/// @todo Clean up this section .
/// @bug Left moment has wrong sign.

Figure 5.2: Example of a documentation header for a function, in the Doxygen syntax.
The inlined todo and bug tags are also demonstrated.

34

Figure 5.3: Newmark-β solution sequence in a linear analysis.

35

Figure 5.4: Newmark-β solution sequence in a non-linear analysis.

36

6 Validation of implementation

In the following, the present implementation of corotated beam elements is vali-
dated numerically by a set of test problems.

If not otherwise stated, the following convergence tolerances have been used during
the Newton-Rapshon residual iterations:

εload = 10−7 (6.52)
εdisplacement = 10−7 (6.53)

6.1 Static problems

Here, the validity of the implementation will be investigated through a set of tests
with pure static behaviour. This serves to reduce the set of potential errors down
to:

• The extraction of deformations (4.2.1, 4.2.2)

• The computation of the tangent stiffness

• The time-stepping algorithm

• Handling of rotations

6.1.1 Cantilevered beam subjected to end force

A beam of length 100 m with its left end constrained against translations and ro-
tations is subjected to a concentrated force of 20 kN on its right end in the lateral
direction. This load does not change direction, and hence remains conservative,
giving no load stiffness contribution. Further, the beam is modeled with 25 coro-
tated beam elements, and the static response is computed by applying the load

37

over 200 increments. Further, E = 107 Pa, I = 1 m4 and A =
√

12 m2 = 3.464 m2.
The full Newton-Raphson scheme is used with load and displacement tolerances
of 10−5, and the geometric stiffness is included. A reference solution was obtained
with the ABAQUS[1] software using similar solver settings and mesh.

Figure 6.5: Beam with large deformations due to end load.

As seen in Figure 6.6, the load–displacement curve deviates from the linear relation
when the displacements increase, as expected. The solution is in virtually perfect
agreement with the reference solution, numerically with a maximum devation (per
increment) of

max
{∣∣∣∣∣∆present −∆reference

∆present

∣∣∣∣∣
n

}
< 0.0045 .

When computing the solution without the inclusion of the geometric stiffness,
convergence problems were observed.

6.1.2 Buckling in axial compression

The critical buckling load, Ncr of a perfectly straight column with one end con-
strained against translations and rotations is given by the Euler load:

Ncr = π2EI

4L2 , (6.54)

where L is the length of the column, and EI is the bending stiffness[28].

38

0

20

40

60

80

100

0 5 10 15 20

v [m]

P [kN]

Linear response

Present solution/Abaqus

Figure 6.6: Lateral displacement of a 100 m long cantilevered beam subjected to a
concentrated force on its free end.

The corresponding instability in the finite element formulation of the column oc-
curs when the tangent stiffness becomes singular, that is

det (Km + Kg) = 0 , (6.55)

where the terms are the material and geometric stiffness matrices, respectively.
The geometric stiffness matrix increases proportionally to the element’s internal
axial load, and the convention used here is that a compressive axial force has a
negative sign.

Applying an increasing axial load to a beam element will indicate if the stiffness
implementation is correct, for example if the sign of the axial force is correct. The
same properties of the beam as in 6.1.1 is used. With these properties

Ncr = π2 · 1 · 107 · 31.4 · 10−3

4 · 102 N = 7.75 kN .

The results indicate the the geometric stiffness is correct, with a buckling point
very close to Ncr, even when using only one element.

39

(a) Equilbrium, using 4 ele-
ments

(b) Equilibrium, using 100
elements.

(c) Load level 0.8, alternati-
ve direction of end-moment.

Figure 6.7: Beam after having been forced into a circular shape by an end-moment.
Note in 6.7a that the curvature of the elements themselves is not shown graphically.

6.1.3 Cantilever subjected to end-moment

The cantilever, initially straight, is subjected to an end-moment that forces it to
bend into a full circle. An analytic value of the required moment is given as [14]:

M = 2πEI
L

. (6.56)

The implementation shows excellent results, with the final position of the beam-
end being close to the other end, within a distance of L · 10−4. However, when the
geometric stiffness was included, convergence was not obtained. Using different
increment sizes shows that even applying the full load in one increment resulted
in the correct solution. This seemed to be independent on the number of elements
used. Both using a mesh with 4 elements and 400 elements produced the cor-
rect solution in one increment, although the last required over 1000 equilbrium
iterations, with relative tolerances of 1 · 10−7.

Further, applying the moment in arbitrary directions (still normal to the direction
of the beam) also produced a correct solution, as illustrated in Figure 6.7c.

Discussion

These results strongly indicate the correct extraction of internal strains from the
deformed position of the elements. Also, the procedures that accumulate rotations
seem to be correct and invariant to the coordinate system. Finally, the correctly
converged mesh of 4 elements demonstrates the remarkably good behaviour of the
linear beam element even at relative end-rotations approaching 90◦.

40

(a) Initial geometry (b) P = 200 (c) P = 600

Figure 6.8: Forty-five degree bend subjected to a lateral load (red arrow). The end
furthest away is constrained against translations and rotations.

6.1.4 Forty-five degree bend

The following example demonstrates a full three-dimensional response, and results
for comparison have been given several places[8,14]. A complete description of the
problem is given by Crisfield (1990)[14].

As shown in Figure 6.8a, the beam geometry follows the path of a circle with radius
R = 100, giving a 45◦ bend. A load with constant direction is applied to one end in
eight equal load increments, up to the final load level of P = 600. The other end
is constrained against translations and rotations, and a mesh of eight elements
is used. The beam cross-section is set to unity, which gives Iss = Itt = 1/12
and A = 1, while the elasticity and shear moduli are E = 1 · 107 and G = E/2,
respectively. It seems that the cited sources give no clear definition of the torsional
stiffness, Inn, so it is here assumed that Inn = 2Iss = 1/6. Within each increment,
the residual tolerance was set to 1 · 10−6 both for the displacement and load.

The minimum mesh size that would converge in all increments when limiting the
maximum number of iterations to 1 · 103 was found to be 15. Increasing the
iteration limit to 1 · 106 did not improve this. Using different increment sizes
seemed to make no difference, with no convergence achieved at around P ≈ 150.
With 15 elements, the lowest number of increments needed was 30. In Table 6.3,
the position of the beam tip at three load levels is given, compared to solutions
given by other authors.

6.2 Dynamic problems

In the previous section, the static behaviour of the model problems were analyzed,
neglecting any damping and inertia forces. Here, further investigation will be made
to the present implementation when inertia forces are included in the equations of

41

Table 6.3: Position of beam tip (x, y, z).
Load level, P

300 450 600
Present 58.79, 40.19, 22.26 52.25, 48.50, 18.53 47.17, 53.48, 15.71
Bathe and Bolourchi[3] 59.2, 39.5, 22.5 — 47.2, 53.4, 15.9
Simo and Vu-Quoc[42] 58.84, 40.08, 22.33 52.32, 48.39, 18.62 47.23, 53.37, 15.79
Cardona and Geradin 58.64, 40.35, 22.14 52.11, 48.59, 18.38 47.04, 53.50, 15.55
Crisfield 58.53, 40.53, 22.16 51.93, 48.79, 18.43 46.84, 53.71, 15.61

motion. Damping, both structural and numerical, is disregarded in these problems.

6.2.1 Centripetal force

A body rotating at a constant rotational velocity about a rotation center will
experience a centripetal force. The centripetal force acting on a point mass m
rotating with a constant angular velocity ω along a path with radius r is given by:

F = mrω2 (6.57)

The rotating point mass is modeled using a single corotated beam element with
lumped masses, which is fixed on one end. The element is slowly accelerated by
applying an end-moment to one end, and the axial force N in the beam element is
recorded. The results are given in Table 6.4, compared to (6.57). The values used
are m = 25.13 kg and r = 10 m. Loading the element slowly minimizes unwanted
fluctuations due to bending deformations in the element. We see that the axial

Table 6.4: Axial force vs. angular velocity
ω N F

0.1109 3.063 kN 3.091 kN
0.3089 24.23 kN 23.98 kN
0.4503 51.00 kN 50.96 kN
0.8289 178.0 kN 172.7 kN

force matches reasonably well with 6.57. However, since the beam element is
flexible, the increasing rotational velocity will give rise to axial deformation in the
element. The discrepancies in the results are most likely caused by oscillations due
to these fluctuations.

42

6.2.2 Energy conservation vs. element mass

In these problems, the internal (linear) strain energy and kinetic energy of the
beam element is computed by the relations

Eu = 1
2
(
f int

)T
d = 1

2dTKd (6.58a)

Ek = 1
2
(
pint

)T
︸ ︷︷ ︸
Momentum

ḋ = 1
2 ḋTMḋ (6.58b)

(6.58c)

where K is the linear stiffness, M either the lumped or consistent mass d the nodal
displacement vector, while f int and pint are the internal elastic force and internal
momentum vectors, respectively.

As no explicit expression of the internal strain energy can be given when the
geometric stiffness is included, it is disregarded in the following examples. The
total strain and kinetic energy of the model is found by an element-wise summation.
Physically speaking, if the energy flux of the system is zero, i.e. when there are no
external loads or dissipation due to damping, the following should hold true:

Etot =
nelt∑
i=1

(Eu + Kk)i = const. (6.59)

where nelt are the total number of elements. As the external load is constant, the
work done on the system is simply

WP = P∆ where ∆ is the lateral displacement of free end. (6.60)

A single beam element of length 10 is constrained against rotations and translations
in one end, while the other end is free. On the free end, a lateral load of constant
direction and magnitude P = 1 · 103 is acting while t ≤ 1, after which the load
is removed and the element is left in an in-plane free-vibration motion. Further,
E = 1E7, ρ = 1E2, I = 1/12, and A = 1, while the time-step size is set to
∆t = 0.01.

Discussion

As can be seen in Figure 6.10, the total energy is correctly conserved with lumped
masses after the external force is removed. Computing the external work by (6.60))
verifies that the total energy is equal to work done by the applied force. However,

43

Figure 6.9: Displaced element at t = 1 due to lateral load of P = 1 · 103 (red arrow).
Note that the rotation of the constrained left end is actually zero, but this is not showed
graphically.

when using consistent masses, the element is observed to be gaining and losing
some energy during the simulation. Additionally, when even larger rotations are
allowed, the total energy is found to vary more significantly—and at some point
the beam is even observed to be turning around and going backwards. This issue
might be attributed to the part of the code dealing with the non-linear geometry, as
further tests show that when using a linear element, the energy is exactly conserved
with consistent masses.

Another observation made is the shorter period with consistent masses. As ex-
pected, the lumped masses will lead to an element appearing heavier than with
consistent masses[11].

6.2.3 Complex problem

The analysis of a large model of a wind turbine subjected to large rotations and
deformations is presented in 7.5, with comparison to other codes. This model
serves to demonstrate the full three-dimensional behaviour in a dynamic analysis.

44

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3 3.5
t

Ek
Eu

Ek + Eu

(a) Using lumped masses.

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5
t

Ek

Eu

Ek + Eu

(b) Using consistent masses.

Figure 6.10: Strain, kinetic and total energy of a single consistent-mass element subjected
to a constant lateral force while t ≤ 1.

45

6.3 Discussion

The static tests in this chapter have demonstrated that the corotated element
produces results very close to other authors. The implementation was shown to
be coordinate-invariant. Application of an axial force to a beam showed that the
implementation of the geometric stiffness was correct. Simple dynamic problems
demonstrate a correct centripetal force for a rotating element.

Still, some limitations are present. Consistent element masses lead to erronous
results, where elements pick up energy. However, lumped masses produce good
results as the mesh is refined.

The application of external nodal moments seems to give problems in combination
with the linear geometric stiffness, most likely due to the simplifications made to
the tangent stiffness.

Although not closely investigated, it is added that the observed speed of the code
was approximately 2.3 times as fast as the real time of the simulation when the
large model of 6.2.3 was simulated (with an Intel i5-2500K 3.30 GHz CPU). Fur-
ther, the number of equilbrium iterations per increment was found to be around
7 (with tolerances of 10−6).

46

7 Application to aeroelastic
analysis of wind turbines

7.1 Introduction

The field of aeroelasticity studies the interaction between elastic and inertia forces
of a structure and external aerodynamic forces. In the analysis and design of
wind turbines, the understanding of such interactions is of great importance. As
of today, many software tools exist that accommodate such analyses, yet their
underlying methods are very diverse. Due to modern wind turbines trending to-
wards increased size and slenderness, and hence flexibility, large-deflection effects
play an increasingly important role in the overall response and should be captured
in modern tools.

In this chapter, the different methods and techniques used in wind turbine codes
are given a brief comparison in an attempt to expose their advantages and disvan-
tages. Further, the present implementation is utilized for such analyses where the
objective is to establish the validity of its results. The large-deflection analysis is
performed with the finite element method by the use of corotated beam elements,
as detailed in previous chapters.

A more general treatment of wind turbine design is outside the scope of this thesis,
and can be found elsewhere[7, 17,30].

7.2 Techniques for analysis of wind turbines

Different approaches to the aeroelastic analysis of wind turbines exist, each hav-
ing their strength and weaknesses and areas of application. The basic design of a
turbine can be accomplished by some crude method, where the primary objective

47

is to predict long-term effects, e.g. fatigue damage and power production. Estab-
lishing the optimized design, however, requires a much more detailed and complex
model of the underlying physics. Thus, different approaches are suited to different
aspects of the design process. References in this section include Rasmussen et al.
(2003) and Cordle (2010)[12,36].

The commonly used methods can be classified as either time-domain based or
frequency-domain based. A time-domain method produces a time-series of the
response from a given time-series of external loading, and allows for the inclusion
of transient events . As an example, a wind turbine’s control system will give rise
to transient effects that are important to capture in an analysis.

A frequency-domain method typically computes a spectrum of the response given
the spectrum of the loading. However, such methods have important limitations
that make them unsuitable as a general-purpose technique for wind turbine anal-
ysis namely that nonlinear effects and transient events can not be included[35].

7.2.1 Modal approaches

In a conventional modal method, a combination of the free-vibration shapes of the
discretized structure is used to express the spatial displacements of the structure. A
displacement in all spatial degrees-of-freedom (DOFs) can effectively be described
with sufficient accuracy by a smaller set of modes, acting as generalized DOFs. As
these mode shapes are orthogonal with respect to the mass and stiffness properties
of the system, a linear multiple-degree-of-freedom (MDOF) system of equations (in
time) can be converted into an uncoupled set of single-degree-of-freedom (SDOF)
equations, which greatly reduces the computational effort required in the solution
process. A modal method is, however, only applicable to a linear system, where the
superposition principle holds and the mode shapes remain unchanged with time.
(It is possible to move nonlinear terms to the right-hand side of the equation, but
the method will no longer resemble the conventional modal technique[11, p. 398].)

Malcolm (2002) establishes the modes of a simple five-DOF model of a horizontal-
axis wind turbine (HAWT), operating at an arbitrary rotational speed. The use
of the Coleman transformation yields a set of equations free of the periodic terms
arising due to the rotation of the blades. By incorporating the mode shapes of the
stationary turbine, the complex operating modes of the system are obtained. The
solution is further applied to both the aerodynamic loading and the displacement
response[29]. Such a procedure is restricted to linear analysis.

Of the wind turbine simulation codes available, many use a modal method. As
mentioned, the method is attractive due to its speed, but it is limited with respect

48

to capturing large deflections (i.e. nonlinear behavior).

7.2.2 Finite element method

In a finite element approach, the structure is discretized into a mesh of elements,
each having their properties (i.e. stiffness, damping, mass). Different types of
elements, e.g. plate and shell elements, can be connected, allowing for a great
flexibility in modeling. Due to the possibly large number of degrees-of-freedom in
a complex model, the finite element method is computationally more expensive
than a modal method. Techniques exist for reducing the number of the degrees-
of-freedom[27]. Nonlinear geometry can be included by finite strain measures or
the corotated formulation, as detailed in previous chapters.

7.2.3 Multibody systems

The multibody system approach divides the structure into either rigid or flexi-
ble elements, and allows for large translations and rotations. The joints—i.e. the
connection between elements—can be configured to constrain the elements in ar-
bitrary directions or types of relative motion. With this approach, the equation of
motion is generally formulated in a nonincremental manner[40], as is not the case
in the finite element method.

7.2.4 Discussion

Mainly three methods are present in existing codes, with the modal method be-
ing unable to capture nonlinearities due to large deflections. The finite element
method with corotated elements provides the most flexibility in modeling. An in-
herent feature of multibody systems is the capability for modeling arbitrary joints
between elements. In closing, it is mentioned that there is ongoing research on
the integration of finite element and multibody systems methods in engineering
applications, via gluing algorithms[40].

7.3 The effects of large blade deflections

Today’s wind turbine blades are long and slender structures that can be subjected
to moderate deflections, and aeroelastic effects resulting from the interaction of

49

the aerodynamic forces and the structural deflections will be important to capture
in an analysis. Additionally, there is ongoing research on new blade designs, e.g.
pre-bent or swept blades, where large deflection effects are of great importance.

The large deflection of blades gives rise to several physical phenomena, mainly
three[36]:

• Reduced effective rotor diameter and cone angle, leading to a lower power
production than estimated with linear computations.

• Structural coupling between edgewise and torsional motions, affecting aero-
dynamic damping and pitching moments at the blade root.

• Increased flapwise stiffness due to geometric nonlinearities.

In a paper, Kallesøe, considering only the steady-state flapwise deflection of the
blades (similar to Sec. 7.5), shows that the edgewise aerodynamic damping can
be decreased by half at worst. This negative damping effect occurs due to a
geometrically nonlinear coupling between the edgewise and torsional blade motion
when the blade is subjected to a flapwise deflection. In turn, this coupling affects
the angle of attack as the blade twists, and hence the loads on the blade, resulting
in a lowered aerodynamic damping for the edgewise motion[25]. As a reduction of
damping lowers the stability, such effects are important to capture.

7.4 Modeling the OC4 reference turbine

The wind turbine model considered here is defined in papers by Jonkman et al.
and Vorpahl et al. [24, 49], as a part of the OC4 (Offshore Code Comparison
Collaboration Continuation) project. In this project, results by several research
teams and available computational codes for wind turbines are compared. The
load cases (e.g. parameters defining the wind conditions) are specified in [48].

Here, the OC4 reference turbine is modeled using the functionality of the frame-
work and the corotational element implementation described in previous chapters.
A geometrically nonlinear behaviour is allowed for the parts of the structure that
are subjected to large displacements and rotations, i.e. the rotor with blades and
the shaft. All parts are modeled with beam elements, with a total of 249 nodes
and 299 elements. All elements have an axi-symmetric cross-section, except the
blades, which have a distinct weak and strong axis. Parts whose properties are
not explicitly defined in the references, such as the shaft–tower connection etc.,
are modeled with a high stiffness and negligible mass.

50

(a) Element model. (b) Graphical view.

Figure 7.11: The finite element model of the full structure. The arrows on the blades in
(a) are the elements’ principal axes.

The main goal of this section is to obtain results of the dynamic response that
demonstrate the validity of the present implementation.

7.4.1 Model overview

7.4.1.1 Support structure

The support structure consists of a bottom truss structure of height 50 m (a jacket),
followed by a circular tower of height 88.15 m, giving a total height of 138.15 m.

7.4.1.2 Shaft and bearings

The shaft transfers forces and moments from the rotor to the tower, but is free to
rotate about its axis due to it being connected to a set of bearings. The bearings
are modeled by having no connection of the rotational degrees-of-freedom of the
shaft with the tower (node 1 and 2 in Figure 7.12). A triangle-shaped structure
transfers the overturning moments to the tower, through two stiff elements (1–T
and 2–T). A tilt angle of 5◦ from the horizontal direction is used.

It is noted that the element 2–H is the actual shaft of approx. 5 m, as defined in
Jonkman et al.

51

Figure 7.12: The shaft (1–2–H) and its connection to the tower as seen from the side.
1–2–H is free to rotate about all axes in connections 1 and 2, while the connection to
the tower (T) is moment-stiff. H is the hub center, i.e. the center of the rotor.

7.4.1.3 Rotor and blades

The rotor consists of three equal blades of length 61.5 m, each with a mass of
17, 740 kg. The root of the blade is located 1.5 m from the hub node along the
blade pitch axis. The hub–blade connection is modeled with beam elements having
a high stiffness and negligible translational mass, while a rotational inertia of
115, 926 kg m2 about the shaft direction is added to the hub node. All blades have
an upwind pre-cone of 2.5◦, i.e. the blades are directed slightly out of the rotor
plane. The distributed structural properties of the blades are found in the previous
references. The beam elements in the blade are modeled with corotated elements,
allowing them to undergo large displacements and rotations.

Separate from the structural element mesh, a mesh of aerodynamic blade elements
is defined along the blade. Each of these elements contains information about the
aerodynamic coefficients, the amount of aerodynamic twist, and the chord length at
the given distance from the blade root, and are input to the BEM computations.
The distributed aerodynamic properties of the blade are found in the previous
references.

7.4.1.4 Loads

The turbine is subjected to a non-turbulent homogeneous wind field of constant
speed Vhub = 8 m/s in the horizontal direction, corresponding to load case 3.2 in
[48]. There is no yaw misalignment. All elements are subjected to gravity forces.

52

The blade element momentum method (BEM) is used to compute the aerodynamic
forces on the blade during the simulation. These forces are computed in terms
of the relative velocity seen by the blade, with the velocity of the blade itself
being included. A tower-shadow correction (by the use of potential flow) to the
aerodynamic loads is effective when a blade is close to the tower. Further, the
generator applies a torque to the main shaft and an opposite moment to the tower
connection (node 2 and T in Figure 7.12, respectively), as described in the next
section.

7.4.1.5 Controller and generator

The turbine operates in a variable-speed, variable pitch-to-feather configuration.
A variable-speed turbine is allowed to rotate at varying rotational speeds, where
instead the generator controls the torque it applies to the shaft. The objective is to
maximize the power output when it is below the rated power (power, torque and
rotational speed is related by P = Tω). Above the rated power (due to high wind
speeds), a pitch controller responds by pitching the blades—effectively altering the
angle of attack and hence the aerodynamic loads.

While a pitch-to-feather system reduces the angle of attack, an active stall system
would reduce the loads by pitching in the opposite direction, so that the angle of
attack increases and progresses into the stalled region. Such a setup will not be
considered here. Additionally, due to the low wind speed in the present load case,
the pitch controller will not be activated during the simulation. The controller
implementation follows the specifications in [24].

7.4.2 Directions in the deformed state

Due to the structure being allowed to undergo large arbitrary rotations and transla-
tion in space, directions that are assumed constant in a small-displacement analysis
must be computed in the deformed configuration of the finite element mesh. As an
example: A yawing motion of the rotor would alter the rotor plane, which e.g. is
a necessary plane of reference for values such as the out-of-plane blade deflection.
Here, a consistent way of extracting these from the finite element configuration is
devised. All vectors are referred to the global inertial coordinate system.

The rotor plane normal is taken as the deformed direction vector of the shaft,
further rotated by the deformational rotations of the shaft at the node connected
to the hub:

nrotor = Rshaft element
d nshaft ,

53

(a) Beam elements, illustrating the proportions of the flapwise to the edgewise
stiffness. Red arrows are gravity (down) and aerodynamic loads.

(b) Graphical blades with thrust and tangential aerodynamic forces. One
load arrow corresponds to one aerodynamic blade element.

Figure 7.13: Layouts of blade meshes.

54

while the rotor plane is further determined by the location of the hub node. This
definition allows for arbitrary yawing and tilting motions, while still having a
reference plane, for e.g. the out-of-plane blade deflections. Although the rotational
deformations of the shaft in general remain small, they are included to avoid loss
of generality, and due to the fact that even small rotations can give moderate
changes in the position of the tip of the blades.

The blade direction is taken as the deformed direction of the element connecting
the blade-root node to the hub node,

nblade = nhub–blade element ,

which gives the deformed direction independent on large yaw and tilt, as well as
the rotation about the shaft of the blades themselves. The line determined by this
axis and the position of the hub node can be used for e.g. computing the blade
in-plane deflection.

7.5 Simulation results and comparisons

Time simulations of the full finite element model described in Section 7.4 is here
carried out where large-displacements are allowed by using corotated elements for
the blades, hub and shaft.

The settings of the nonlinear solver used in these simulations are summarized in
Table 7.5.

Table 7.5: Simulation settings
∆t 0.05 s
α −0.025
ε 10−7

Mass Lumped

7.5.1 Startup simulation

Initially, at t = 0 s, the turbine is at stand-still, with zero pitch, and zero generator
torque. The aerodynamic forces are sufficient to start the turbine, and at approxi-
mately t = 77 s, at a rotational speed of 6.4 rounds/min, the controller commands
the generator to apply the counteracting torque. As seen in Figure 7.14, a tran-
sient response is observed, where the acceleration of the rotor is arrested by the

55

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180
t

Generator torque [MNm]

Rotor speed [rpm]

Figure 7.14: Rotor speed and applied generator torque from start-up to the steady state.

counteracting torque, and then slightly decelerated, until a steady-state behaviour
is adopted at t ≈ 150 s.

As the rotor speed increases, the thrust force increases, causing the blades to
bend out of the rotor plane, as can be seen in Figure 7.15. Initially, some fluc-
tuation is seen in the tip deflection—this is caused by the sudden application of
the aerodynamic loads on the stand-still turbine. However, this is damped out
by a combination of the aerodynamic and algorithmic damping as the simulation
progresses.

In the steady state, the thrust and hence the tip deflection experiences periodic
fluctuations. This occurs each time the blade passes the tower, when the thrust is
reduced due to the tower shadow effect.

7.5.2 Comparison with other codes

Time histories of the steady-state behaviour (Figure 7.15) for other codes have
been submitted to the OC4 project, and serves as a good basis for investigating
the present results. A total of eight other codes are compared to the present
results, including the following:

56

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180
t

Thrust [102 kN]

Out-of-plane tip deflection [m]

Figure 7.15: Out-of-plane tip deflection and total thrust force on one blade from start-up
to the steady state. The vertical line marks the application of the generator torque.

1. FAST-ANSYS

2. USFOS-vpOne

3. FEDEM Windpower

4. GAST

5. Bladed V4

6. Flex5

7. HAWC2

8. ADCoS-Offshore

Here, the steady state response is studied, by considering the 25 second time-span
t ∈ [150 s, 175 s] in the simulation of 7.5.1. To avoid clutter, the figures do not
explicitly label the graphs of each code—this information can be found in the
references given previously. The resulting out-of-plane tip deflection and tip twist
of one blade is shown in Figure 7.16 and Figure 7.17.

57

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25

T
ip

de
fle

ct
io
n
[m

]

t [s]

��=
Present

Figure 7.16: Out-of-plane tip deflection in the steady state, compared to other codes.
The present results are the highlighted curve.

7.5.3 Remarks

The results obtained with the present implementation are in good agreement with
other codes. Differences observed are attributed to differences in the model input
or the aerodynamic (i.e. BEM) computations, and not to the corotational finite
element implementation itself. It is observed that only four codes include the blade
twisting, and none of these are based on a modal method, but rather the finite
element method or multibody systems.

58

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30

T
ip

tw
ist

[◦]

t [s]

��= Present

Figure 7.17: Tip twist.

Figure 7.18: Tip twist in the steady state, compared to other codes. The present results
are the highlighted curve.

59

8 Conclusion

8.1 Summary of thesis

A formulation has been established that enables the large deformation (i.e. geomet-
rically nonlinear) analysis of structures modeled with finite elements. The theory
and procedures of the corotational formulation in the context of three-dimensional
finite beam elements was established, where the necessary treatment of rotations
in space was given special care. A commonly used algorithm for the solution of
the nonlinear dynamic equation of motion was presented, namely Newmark-β with
Newton-Raphson iterations.

A previously developed finite element framework based on object-oriented princi-
ples was extended with new functionality supporting the corotional formulation.
The interaction of the existing framework source code and the corotational pro-
cedures was demonstrated. The thorough benchmarking and validation of the
implementation produced excellent results compared to other authors, although
some limitations of the implementation was discovered.

A discussion of different methods for the aeroelastic analysis of wind turbines,
including their major differences, was given. Further, due to current trend in wind
turbine designs, the need for aeroelastic codes that capture large blade deflections
was identified. With the use of the existing BEM code, time simulations of a
full model of the OC4 reference turbine were carried out, where the goal was to
study the behaviour of the rotating flexible blades modeled with corotated beam
elements.

The resulting responses were in good agreement with results produced by other
codes, particularly those with a similar underlying algorithm, and discrepancies
were most likely due to differences in the model and the computations of the
aerodynamic loads and not the corotational implemention itself.

60

8.2 Conclusion

The conclusions of this thesis were mainly that:

• The corotational formulation is an attractive approach for allowing nonlinear
geometry in small-strain applications.

• Geometrically nonlinear analysis in 3D requires non-trivial treatments of
rotations utilizing tensors or quaternions.

• Corotated beam elements are well-suited to the analysis of wind turbines,
while modal methods are unable to capture large deflections.

• Less flexibility in modeling is achieved with the multibody systems approach
compared to the corotated formulation, however multibody systems are more
flexible in defining joints.

• The present implementation was successful, and produced good results in
comparison with other codes for wind turbine analysis, although further
benchmarking should be performed.

8.3 Suggestions for further development

Further work on the software developed here should include various improvements.
Improving the efficiency of simulations is suggested, and would call for research
on e.g.: (1) Adaptive time-step algorithms and their implications to the BEM
computations in varying wind conditions, (2) substructuring/localized nonlinear-
ity[10, p 332] (for instance, if the tower is known in advance to behave linearly,
simplifications in the solution process can be made), as well as (3) other reduction
techniques[27]. As the analyst often would be interested in running a large set of
simulations in one single batch, as fast as possible, such improvements are obvi-
ously important. However, as pointed out earlier, in the present state the code
runs over twice as fast as the real time of the simulation, easily allowing for a
real-time user experience.

Further work should include structural damping with the corotated elements, and
ensure correct behaviour (which is known to be problematic[19]). The application
of BEM loads to the finite element mesh also requires further work. As of now, the
BEM loads do not account for the nodal velocities in a correct manner, as veloc-
ities are not incremented during equilbrium iterations—and in a true aeroelastic
analysis, the BEM loads would depend on the structural velocities. Problems with
consistent masses observed in Chapter should also be investigated. Finally, the

61

internal Coriolis force of the element has not been discussed, (and rather seems to
be neglected in the present implementation), and could be of importance when a
coarse mesh is used.

62

References

[1] ABAQUS/Standard user’s manual. Hibbitt, Karlsson & Sorensen, 2001.

[2] John Argyris. An excursion into large rotations. Computer Methods in Applied
Mechanics and Engineering, 32(1–3):85–155, September 1982.

[3] K-J. Bathe and S. Bolourchi. Large displacement analysis of three-dimensional
beam structures. Numerical methods in engineering, 14:961–986, 1979.

[4] Ted Belytschko, Wing Kam Liu, and Brian Moran. Nonlinear Finite Elements
for Continua and Structures. Wiley, 1 edition, September 2000.

[5] Pål G. Bergan, Per Kr. Larsen, and Egil Mollestad. Svingning av konstruk-
sjoner. Tapir forlag, second edition, 1986.

[6] Per Ivar Bruheim. Implementation of a modified inverse iteration algorithm
in an object-oriented finite element framework. Technical report, NTNU,
Trondheim, Norway, 2011.

[7] Tony Burton, Nick Jenkins, David Sharpe, and Ervin Bossanyi. Wind Energy
Handbook. Wiley, 2 edition, June 2011.

[8] A. Cardona and M. Geradin. Beam finite element non-linear theory with
finite rotations. International Journal for Numerical Methods in Engineering,
26(11):2403–2438, 1988.

[9] Anil K. Chopra. Dynamics of Structures. Prentice Hall, 3 edition, September
2006.

[10] Ray W. Clough and Joseph Penzien. Dynamics of structures. McGraw-Hill,
second edition edition, 1993.

[11] Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt.
Concepts and applications of finite element analysis. John Wiley & Sons, Ltd,
fourth edition edition, 2001.

63

[12] Andrew Cordle. State-of-the-art in design tools for floating offshore wind
tur-bines. Technical report, Project UpWind, 2010.

[13] Evangelos A. Coutsias and Louis Romero. The quaternions with an appli-
cation to rigid body dynamics. Technical report, University of New Mexico,
Albuquerque, 1999.

[14] M. A Crisfield. A consistent co-rotational formulation for non-linear, three-
dimensional, beam-elements. Computer Methods in Applied Mechanics and
Engineering, 81(2):131–150, August 1990.

[15] M. A. Crisfield, U. Galvanetto, and G. Jelenić. Dynamics of 3-D co-rotational
beams. Computational Mechanics, 20(6):507–519, November 1997.

[16] M. A Crisfield and J. Shi. A co-rotational element/time-integration strategy
for non-linear dynamics. International Journal for Numerical Methods in
Engineering, 37(11):1897–1913, June 1994.

[17] Martin O. L. Hansen. Aerodynamics of Wind Turbines. Routledge, 2nd edi-
tion, December 2007.

[18] Bjørn Haugen. Buckling and stability problems for thin shell structures us-
ing high performance finite elements. Dissertation, University of Colorado,
Colorado, 1994.

[19] Bjørn Haugen. Private conversation, May 2012.

[20] Bjørn Haugen and Carlos A. Felippa. A unified formulation of Small-Strain
corotational finite elements: I. theory. Technical report, University of Col-
orado, 2005.

[21] Kuo-Mo Hsiao and Jing-Yuh Jang. DYNAMIC ANALYSIS OF PLA-
NAR FLEXIBLE MECHANISMS BY CO-ROTATIONAL FORMULATION.
Technical report, National Chiao Tung University, 1989.

[22] Masashi Iura. Effects of coordinate system on the accuracy of corotational
formulation for Bernoulli-Euler’s beam. International Journal of Solids and
Structures, 31(20):2793–2806, 1994.

[23] Jae Won Jang. Characterization of live modeling performance boundaries for
computational structural mechanics. Ph.D. thesis, University of Washington,
2007.

[24] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-MW
reference wind turbine for offshore system development. Technical Report
NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.

64

[25] B. S. Kallesøe. Effect of steady deflections on the aeroelastic stability of a
turbine blade. Wind Energy, 14(2):209–224, 2011.

[26] Timothy Knill. The application of aeroelastic analysis output load distribu-
tions to finite element models of wind. Wind Engineering, 29(2):153–168,
March 2005.

[27] P. Krysl, S. Lall, and J. E. Marsden. Dimensional model reduction in non-
linear finite element dynamics of solids and structures. International Journal
for Numerical Methods in Engineering, 51(4):479–504, March 2001.

[28] Per Kr. Larsen, Arild. H Clausen, and Arne Aalberg. Stålkonstruksjoner.
Profiler of formler. Tapir akademisk forlag, Trondheim, 3. utgave edition,
2003.

[29] David J. Malcolm. Modal response of 3-Bladed wind turbines. Journal of
Solar Energy Engineering, 124(4):372–377, November 2002.

[30] James F. Manwell, Jon G. McGowan, and Anthony L. Rogers. Wind Energy
Explained: Theory, Design and Application. Wiley, 2 edition, February 2010.

[31] Kjell Magne Mathisen. Lecture 8, nonlinear finite element analysis. lecture
notes from the course TKT4197 - nonlinear finite element analysis at NTNU,
2011.

[32] G.R. Miller. An object-oriented approach to structural analysis and design.
Computers and Structures, 40(1):75–82, 1991.

[33] G.R. Miller. Coordinate-free isoparametric elements. Computers and Struc-
tures, 49(6):1027–1035, 1993.

[34] G.R. Miller, P. Arduino, J. Jang, and C. Choi. Localized tensor-based solvers
for interactive finite element applications using c++ and java. Computers and
Structures, 81(7):423–437, 2003.

[35] D. C. Quarton. The evolution of wind turbine design analysis—a twenty year
progress review. Wind Energy, 1(S1):5–24, 1998.

[36] Flemming Rasmussen, Morten Hartvig Hansen, Kenneth Thomsen, Tor-
ben Juul Larsen, Franck Bertagnolio, Jeppe Johansen, Helge Aagaard Mad-
sen, Christian Bak, and Anders Melchior Hansen. Present status of aeroelas-
ticity of wind turbines. Wind Energy, 6(3):213–228, 2003.

[37] M.D. Rucki and G.R. Miller. An algorithmic framework for flexible finite
element-based structural modeling. Computer Methods in Applied Mechanics
and Engineering, 136(3-4):363–384, 1996.

65

[38] M.D. Rucki and G.R. Miller. An adaptable finite element modelling kernel.
Computers and Structures, 69(3):399–409, 1998.

[39] Ahmed A. Shabana. Computational Continuum Mechanics. Cambridge Uni-
versity Press, March 2008.

[40] Ahmed A. Shabana, Oliver A. Bauchau, and Gregory M. Hulbert. Integration
of large deformation finite element and multibody system algorithms. Journal
of Computational and Nonlinear Dynamics, Vol 2:351–359, 2007.

[41] Ken Shoemake. Quaternions.

[42] J. C. Simo and L. Vu-Quoc. On the dynamics of flexible beams under large
overall motions-The plane case : part 1. J. Appl. Mech. ASME 53,849-858.,
1986.

[43] Paul E. Thomassen, Per Ivar Bruheim, Loup Suja, and Lars Frøyd. A novel
tool for FEM analysis of offshore wind turbines with innovative visualization
techniques. Trondheim, 2011.

[44] Lloyd Nicholas Trefethen and David Bau. Numerical Linear Algebra. SIAM,
June 1997.

[45] Dimitri van Heesch. Doxygen, February 2012.

[46] John Vince. Geometric Algebra for Computer Graphics. Springer,
Bornemouth University, 2008.

[47] Arne Vollan and Louis Komzsik. Computational Techniques of Rotor Dynam-
ics with the Finite Element Method. CRC Press, March 2012.

[48] Fabian Vorpahl and Wojciech Popko. Description of the load cases and output
sensors to be simulated in the OC4 project under IEA wind annex XXX, 2011.

[49] Fabian Vorpahl, Wojciech Popko, and Daniel Kaufer. Description of a basic
model of the "UpWind reference jacket" for code comparison in the OC4
project under IEA wind annex XXX, 2011.

66

Appendices

67

Appendix A

Excerpt of C++ code

A.1 FrameEltCorot.h
1 #i n c l u d e " FrameElt . h"

#i n c l u d e "GQuat . h"
3

/∗∗
5 ∗ The FrameEl tCorot c l a s s implements a frame e lement u s i n g the c o r o t a t e d

∗ f o r m u l a t i o n .
7 ∗

∗ By u s i n g the non− l i n e a r s o l v e r w i th t h i s e lement , a r b i t r a r i l y l a r g e
9 ∗ f i n i t e d i s p l a c e m e n t s and r o t a t i o n s a r e suppo r t ed . The major d i f f e r e n c e

∗ to a FrameElt i s t h a t the U p d a t e R e s i s t i n g F o r c e () f u n c t i o n e x t r a c t s the
11 ∗ d e f o r m a t i o n a l d i s p l a c e m e n t s and r o t a t i o n s , a f t e r e s t a b l i s h i n g the c o r o t a t e d

∗ c o n f i g u r a t i o n (which i s one the l i n e between the d i s p l a c e d noda l p o s i s t i o n s) .
13 ∗

∗ The o t h e r d i f f e r e n c e l i e s i n the NewmarkSolver i t s e l f , i n how i t
15 ∗ updates / accumu la te s the r o t a t i o n s a f t e r each i t e r a t i o n and inc r ement .

∗ See f o r example NewmarkSolver : : UpdateSta teNon l i n ()
17 ∗

∗ @author PIB
19 ∗/

c l a s s FrameEl tCorot : p u b l i c FrameElt
21 {

23 p u b l i c :
F rameEl tCorot (

25 Node ∗n1 ,
Node ∗n2 ,

27 M a t e r i a l ∗m,
C r o s s S e c t i o n ∗ x s e c t) ;

29
v i r t u a l ~ FrameEl tCorot () ;

31
// FrameElt o v e r r i d e s //

33 v i r t u a l vo id In s ta l lMCK (boo l lumped = t r ue) ;
v i r t u a l vo id SetWeakAx i sPerpend icu la rTo (GVector v) ;

35 v i r t u a l vo id Twist (S c a l a r angleDeg) ;
// Do not use the f u n c t i o n s below .

68

37 v i r t u a l vo id I n s t a l l S t i f f n e s s () { a s s e r t (f a l s e) ; } ;
v i r t u a l vo id I n s t a l l M a s s (boo l lumped = t r ue) { a s s e r t (f a l s e) ; } ;

39 v i r t u a l vo id I n s t a l l D a m p i n g (boo l lumped = t r ue) { a s s e r t (f a l s e) ; } ;
v i r t u a l Element : : ElementType GetType () const ;

41
v i r t u a l vo id U p d a t e R e s i s t i n g F o r c e () ;

43 v i r t u a l vo id P o s t I t e r a t i o n s () ;
v i r t u a l S c a l a r G e t S t r a i n E n e r g y () const ;

45 v i r t u a l vo id G e t E l a s t i c F o r c e s (GVector &f i , GVector &f j , GVector &mi , GVector &
mj , boo l NRi te r = f a l s e) const ;

// End FrameElt o v e r r i d e s //
47

p r i v a t e :
49 vo id G e t E l a s t i c F o r c e s C o r o t (GVector &f i , GVector &f j , GVector &mi , GVector &mj)

const ;
vo id U p d a t e S t a t e C o r o t a t i o n a l () ;

51 vo id ComputeSd i rTd i rCorot (GTensor const& r o t i , GTensor const& r o t j) ;
vo id ComputeSd i rTd i rCorot (GQuat const& r o t i , GQuat const& r o t j) ;

53 vo id S t o r e I n i t D i r e c t i o n s () ;

55 /// I n i t i a l (t = 0) d i r e c t i o n s
GVector m I n i t D i r e c t i o n , m I n i t S D i r e c t i o n , m I n i t T D i r e c t i o n ;

57 /// I n i t i a l t r a n s f o r m a t i o n t e n s o r
GTensor mT0;

59
// The c u r r e n t d e f o r m a t i o n a l t r a n s l a t i o n s and r o t a t i o n s

61 GVector mDefTransi ;
GVector mDefTransj ;

63 GVector mDefRoti ;
GVector mDefRotj ;

65

67 } ;

:

A.2 GQuat.h
#i n c l u d e " Def . h"

2 #i n c l u d e " GTensor . h"
c l a s s GQuatRing ;

4
/∗∗

6 ∗ An imp l ementa t i on o f a q u a t e r n i o n type .
∗

8 ∗ @author PIB
∗/

10 c l a s s GQuat
{

12
p u b l i c :

14 GQuat () ;
GQuat (S c a l a r i , S c a l a r j , S c a l a r k , S c a l a r r) ;

16 GQuat (GVector const& r o t A x i s , S c a l a r a n g l e) ;
e x p l i c i t GQuat (GVector const& r o t V e c t o r) ;

18 e x p l i c i t GQuat (GTensor const& r o t T e n s o r) ;

69

20 S c a l a r X() const { r e t u r n mx ; }
S c a l a r Y() const { r e t u r n my ; }

22 S c a l a r Z () const { r e t u r n mz ; }
S c a l a r W() const { r e t u r n mw; }

24
S c a l a r Magnitude () const ;

26 S c a l a r Norm () const ;
S c a l a r Abs () const ;

28 GVector Rotate (GVector const& vec) const ;

30 GTensor& ToTensor () const ;
vo id Norma l i ze () ;

32
GQuat& Negate () ;

34 GQuat& Conjugate () ;
GQuat& Square () ;

36 GQuat& I n v e r t () ;

38 GQuat& ope ra to r+=(const GQuat& b) ;
GQuat& operator−=(const GQuat& b) ;

40 GQuat& ope ra to r ∗=(const S c a l a r b) ;
GQuat& ope ra to r /=(const S c a l a r b) ;

42 GQuat& ope ra to r ∗=(const GQuat& b) ;
GQuat& ope ra to r /=(const GQuat& b) ;

44
f r i e n d i n t ope ra to r !=(const GQuat& a , const GQuat& b) ;

46 f r i e n d GQuat operator −(GQuat& x) ;
f r i e n d GQuat ope ra to r +(const GQuat& x , const GQuat& y) ;

48 f r i e n d GQuat operator −(const GQuat& x , const GQuat& y) ;
f r i e n d GQuat ope ra to r ∗(const GQuat& x , const S c a l a r y) ;

50 f r i e n d GQuat ope ra to r ∗(const GQuat& x , const GQuat& y) ;
f r i e n d GQuat ope ra to r /(const GQuat& x , const GQuat& y) ;

52 f r i e n d s t d : : ost ream& operator <<(s t d : : ost ream& ost , const GQuat& x) ;

54 p r i v a t e :
S c a l a r mx , my , mz , mw;

56
s t a t i c GTensorRing sWorkTensorRing ;

58 /// E p s i l o n
s t a t i c const S c a l a r sEPS ;

60 } ;

:

A.3 NewmarkDOF.h
1 #i n c l u d e " GaussElimDOF . h"

#i n c l u d e "GQuat . h"
3

c l a s s NewmarkDOF : p u b l i c GaussElimDOF
5 {

(. . .)
7

GTensor GetRotDispAccumT () const ;
9 GQuat GetRotDispAccumQ () const ;

11 p r i v a t e :

70

13 /// F lag e n a b l i n g f i n i t e r o t a t i o n s f o r t h i s DOF.
boo l m I s C o r o t a t i o n a l ;

15
/// S i m i l a r to mPrevDisp , but used f o r f i n i t e r o t a t i o n s .

17 GTensor mPrevRotDispT ;
/// S i m i l a r to mDisplacement , but used f o r f i n i t e r o t a t i o n s .

19 GTensor mRotDispT ;

21 /// S i m i l a r to mPrevDisp , but used f o r f i n i t e r o t a t i o n s .
GQuat mPrevRotDispQ ;

23 /// S i m i l a r to mDisplacement , but used f o r f i n i t e r o t a t i o n s .
GQuat mRotDispQ ;

:

A.4 Nonlinear timestep function
/∗∗

2 ∗ Does one t ime s t e p u s i n g Newton−Raphson (NR) e q u i l i b r i u m i t e r a t i o n s
∗ u n t i l the r e s i d u a l i s s u f f i c i e n t l y s m a l l .

4 ∗
∗ When t h i s f u n c t i o n i s completed , the i n t e r n a l l o a d s o f a l l e l ement s

6 ∗ w i l l be i n e q u i l b r i u m wi th the a p p l i e d e x t e r n a l l o a d s . For a dynamic
∗ a n a l y s i s , the m o d i f i e d e f f e c t i v e s t i f f n e s s ma t r i x i s used (Khat) ,

8 ∗ so t h a t i n e r t i a and damping f o r c e s a r e taken i n t o account .
∗

10 ∗ I f A n a l y s i s I n i t N o n l i n e a r () has not been c a l l e d , i t w i l l be c a l l e d once .
∗

12 ∗ @note Only dynamic a n a l y s e s a r e assumed .
∗

14 ∗ @throws N R I t e r a t i o n s N o t C o n v e r g i n g E x c e p t i o n i f the i t e r a t i o n c o u n t e r
∗ pas sed some l i m i t w i thout c o n v e r g i n g .

16 ∗
∗ @author PIB

18 ∗/
vo id FEDynamic : : DoTimeStepNonl inear ()

20 {
boo l d o I t e r a t i o n s = t r ue ;

22 boo l useFu l lNR = t r ue ;
i n t nMaxI te r = 100 ;

24
i f (! m A n a l y s i s I n i t)

26 {
A n a l y s i s I n i t N o n l i n e a r () ;

28 m A n a l y s i s I n i t = t r ue ;
}

30
a s s e r t (dynamic_cast<NewmarkSolver∗>(mSolver) != NULL) ;

32 NewmarkSolver∗ s o l v e r = (NewmarkSolver ∗) mSolver ;

34 S c a l a r s t a r tT ime = mCurrTime ;
mCurrTime += (1 + s o l v e r−>GetAlpha ()) ∗ s o l v e r−>GetDt () ; // used i n ApplyLoad

36
s o l v e r−>ResetKhat () ;

38 In s ta l lMCK () ;
A p p l y C o n s t r a i n t () ;

71

40 s o l v e r−>ComputeAandB () ;
s o l v e r−>Prepa reKhat Inv () ;

42 ApplyLoad () ;
s o l v e r−>ResetFs () ;

44 s o l v e r−>ComputePHat () ;

46 s o l v e r−>ZeroDispTimeStep () ; // NB! Do t h i s b e f o r e I n i t D e l t a R .
s o l v e r−>I n i t D e l t a R () ;

48
i n t i t e r C o u n t = 0 ;

50 boo l conve rged = f a l s e ;
w h i l e (! conve rged)

52 {
// I f f u l l Newton−Raphson i s used , update the s t i f f n e s s f o r each i t e r a t i o n ,

54 // e x c e p t f i r s t i t e r a t i o n , where the computat ion was a l r e a d y done .
i f (useFu l lNR && i t e r C o u n t > 0)

56 {
s o l v e r−>ResetKhat () ;

58 In s ta l lMCK () ;
A p p l y C o n s t r a i n t () ;

60 s o l v e r−>ComputeAandB () ;
s o l v e r−>Prepa reKhat Inv () ;

62 }

64 s o l v e r−>So lveSys t emNon l i n () ;

66 i f (! d o I t e r a t i o n s)
break ;

68
s o l v e r−>ResetFs () ;

70
f o r (uns igned i n t i = 0 ; i < mElements . s i z e () ; i ++)

72 {
mElements [i]−> U p d a t e R e s i s t i n g F o r c e () ;

74 }

76 f o r (uns igned i n t i = 0 ; i < mLoads . s i z e () ; i ++)
{

78 mLoads [i]−>UpdateLoadNonl in () ;
}

80
s o l v e r−>ComputeRes idua lForce () ;

82 S c a l a r l o a d R e s i d u a l = s o l v e r−>G e t R e s i d u a l (NewmarkDOF : : eLOAD) ;
S c a l a r d i s p l R e s i d u a l = s o l v e r−>G e t R e s i d u a l (NewmarkDOF : : eDISPLACEMENT) ;

84
S c a l a r convTolLoad = 1E−6;

86 S c a l a r c o n v T o l D i s p l = 1E−6;
conve rged = (l o a d R e s i d u a l < convTolLoad && d i s p l R e s i d u a l < c o n v T o l D i s p l) ;

88
i t e r C o u n t ++;

90
i f (i t e r C o u n t > nMaxI te r)

92 {
// Al low the f i r s t i n c r ement to not be f u l l y c o n v e r g e n t

94 i f (s t a r tT ime == 0)
{

96 conve rged = t r ue ;
break ;

98 }

100 throw N R I t e r a t i o n s N o t C o n v e r g i n g E x c e p t i o n () ;
}

72

102 }

104 s o l v e r−>UpdateSta teNon l i n () ;
s o l v e r−>ZeroDispTimeStep () ;

106 mCurrTime = s ta r tT ime + s o l v e r−>GetDt () ;

108 Model : : UpdateSensor s (mCurrTime) ;
i f (mSenso rSo lu t i on != NULL)

110 mSensorSo lut ion−>LogIncrement (0 , i t e r C o u n t , mCurrTime , s o l v e r−>GetDt () ,
mAlpha , t r ue) ;

112 }

:

A.5 Corotational update procedure
/∗∗

2 ∗ E x t r a c t s the d e f o r m a t i o n a l s t a t e o f t h i s e l ement from the c u r r e n t (i t e r a t e d)
d i s p l a c e m e n t .

∗ W i l l a l s o e s t a b l i s h the c o r o t a t e d base v e c t o r s .
4 ∗

∗ @author PIB
6 ∗/

vo id FrameEl tCorot : : U p d a t e S t a t e C o r o t a t i o n a l ()
8 {

Node∗ n i = GetNodei () ;
10 Node∗ n j = GetNodej () ;

12 GVector const& x i = ni−>GetLoc () ;
GVector const& x j = nj−>GetLoc () ;

14 GVector u i = ((NewmarkDOF∗) n i−>GetDOF(DOF : : e T r a n s l a t i o n))−>GetPrevDisp () + ((
NewmarkDOF∗) n i−>GetDOF(DOF : : e T r a n s l a t i o n))−>GetDispTimeStep () ;

GVector u j = ((NewmarkDOF∗) nj−>GetDOF(DOF : : e T r a n s l a t i o n))−>GetPrevDisp () + ((
NewmarkDOF∗) nj−>GetDOF(DOF : : e T r a n s l a t i o n))−>GetDispTimeStep () ;

16
// " d i s p l " = d i s p l a c e d

18 GVector x i d i s p l = x i + u i ;
GVector x j d i s p l = x j + u j ;

20
// E s t a b l i s h the deformed l o c a l CR system by s i m p l y t a k i n g the ghos t e l ement

22 // d i r e c t l y between the (d i s p l a c e d) p o s i t i o n o f the nodes
GVector n e w D i r e c t i o n = (x j d i s p l − x i d i s p l) . D i r e c t i o n () ;

24 S c a l a r newLength = (x j d i s p l − x i d i s p l) . Magnitude () ;
S c a l a r a x i a l E l o n g = 2 . 0 / (mLength+newLength) ∗ (x j − x i + 0 . 5∗ (uj−u i)) . Dot (uj−u i

) ;
26

mDi rec t i on = n e w D i r e c t i o n ; // Update the e l ement d i r e c t i o n
28 a s s e r t (mDi r ec t i on . Magnitude () > 0 . 0) ;

30 // Compute d e f o r m a t i o n a l t r a n s l a t i o n s (i . e . a x i a l) i n l o c a l C . S !
mDefTransi . SetComponents (0 , 0 , 0) ;

32 mDefTransj . SetComponents (a x i a l E l o n g , 0 , 0) ;

34 // Get f i n i t e r o t a t i o n s and s e t p r i n c i p a l axe s .
GTensor f i n i t e R o t i , f i n i t e R o t j ;

36 f i n i t e R o t i = ((NewmarkDOF∗) n i−>GetDOF(DOF : : e R o t a t i o n))−>GetRotDispAccum () ;

73

f i n i t e R o t j = ((NewmarkDOF∗) nj−>GetDOF(DOF : : e R o t a t i o n))−>GetRotDispAccum () ;
38

ComputeSd i rTd i rCorot (f i n i t e R o t i , f i n i t e R o t j) ;
40

// E s t a b l i s h t r a n s f o r m a t i o n m a t r i c e s //
42 GTensor Tn(mDi r ec t i on . vx , mDi r ec t i on . vy , mDi r ec t i on . vz ,

mSDi rec t ion . vx , mSDi rec t ion . vy , mSDi rec t ion . vz ,
44 mTDirect ion . vx , mTDirect ion . vy , mTDirect ion . vz) ; // Us ing the updated

d i r e c t i o n s

46 // Compute d e f o r m a t i o n a l r o t a t i o n s (l o c a l)
GTensor const& T0transposed = mT0. Transpose () ;

48 GTensor const& Rd_i = Tn . Dot (f i n i t e R o t i . Dot (T0t ransposed)) ;
GTensor const& Rd_j = Tn . Dot (f i n i t e R o t j . Dot (T0t ransposed)) ;

50 // Save the d e f o r m a t i o n a l r o t a t i o n v e c t o r s (l o c a l)
CorotToo l s : : TensorToVector (Rd_i , mDefRoti) ;

52 CorotToo l s : : TensorToVector (Rd_j , mDefRotj) ;
}

:

A.6 Accumulation of rotations
1 vo id NewmarkDOF : : UpdateSta teNon l i n (const S c a l a r ∗ f a c t r)

{
3 i f (mConstra inedp)

r e t u r n ;
5

(∗∗∗)
7

i f (t h i s−>GetTag () == DOF : : e T r a n s l a t i o n)
9 {

11 GVector duDot ;
GVector duDotDot ;

13
// v e l o c i t y and a c c e l e r a t i o n i n c r e m e n t s

15 duDot = mDispTimeStep∗dampKhatFactor − mVe loc i t y ∗dampaFactor −
m A c c e l e r a t i o n ∗dampbFactor ;

duDotDot = mDispTimeStep∗massKhatFactor − mVe loc i t y ∗massaFactor −
m A c c e l e r a t i o n ∗massbFactor ;

17
mVe loc i t y += duDot ;

19 m A c c e l e r a t i o n += duDotDot ;
mPrevDisp += mDispTimeStep ;

21 mDisplacement = mPrevDisp ;

23 }
e l s e i f (GetTag () == DOF : : e R o t a t i o n)

25 {
i f (m I s C o r o t a t i o n a l)

27 {
GVector duDot ;

29 GVector duDotDot ;

31 // v e l o c i t y and a c c e l e r a t i o n i n c r e m e n t s

74

duDot = mDispTimeStep∗dampKhatFactor − mVe loc i t y ∗dampaFactor −
m A c c e l e r a t i o n ∗dampbFactor ;

33 duDotDot = mDispTimeStep∗massKhatFactor − mVe loc i t y ∗massaFactor −
m A c c e l e r a t i o n ∗massbFactor ;

35 // Tensor update
CorotToo l s : : I nc r ementTenso r (mDispTimeStep , mPrevRotDispT) ;

37 mRotDispT = mPrevRotDispT ;
CorotToo l s : : TensorToVector (mPrevRotDispT , mPrevDisp) ;

39 mDisplacement = mPrevDisp ;

41 mVe loc i t y += duDot ;
m A c c e l e r a t i o n += duDotDot ;

43 }
}

45 e l s e // D e f a u l t (a d d i t i v e) upda t i ng
{

47 GVector duDot ;
GVector duDotDot ;

49
// v e l o c i t y and a c c e l e r a t i o n i n c r e m e n t s

51 duDot = mDispTimeStep∗dampKhatFactor − mVe loc i t y ∗dampaFactor − m A c c e l e r a t i o n ∗
dampbFactor ;

duDotDot = mDispTimeStep∗massKhatFactor − mVe loc i t y ∗massaFactor −
m A c c e l e r a t i o n ∗massbFactor ;

53
// inc r ement the a c t u a l v a l u e s

55 mVe loc i t y += duDot ;
m A c c e l e r a t i o n += duDotDot ;

57 mPrevDisp += mDispTimeStep ;
mDisplacement = mPrevDisp ;

59
}

61
mAppliedLoad . Zero () ;

63
}

:

75

	1 Introduction
	Principal objectives
	Overview of literature
	Outline of thesis

	2 Rotations in space
	Introduction
	Rotation representations
	Rotation vector and axis-angle
	Rotation tensor
	Euler angles

	Quaternions
	Quaternion algebra

	Conversions
	Axis-angle to quaternion
	Axis-angle to rotation tensor
	Rotation tensor to rotation vector

	Accumulation of rotations
	Using tensors
	Using quaternions

	Quaternion vs. tensor
	Storage and performance
	Round-off and normalization

	Concluding remarks

	3 The nonlinear equation of motion
	Introduction
	Geometric nonlinearities
	Non-conservative forces and load stiffness
	A note on the updated and total Lagrangian formulations

	Solution of the non-linear equation of motion
	The dynamic nonlinear dynamic equation of motion
	The Newmark-Beta integrators
	Newton-Raphson iterations

	Mass and stiffness tensors
	Material stiffness tensors
	Consistent mass tensors
	Geometric stiffness tensor

	4 Corotational formulation of beam elements
	Introduction
	Background
	Basic concept
	Configurations
	Directions and transformation

	Extraction of deformations
	Extraction of deformational translations
	Extraction of deformational rotations
	Establishing the corotated base vectors

	The tangent stiffness
	Consistent tangent stiffness
	A modified tangent stiffness
	Remarks on the consistent tangent stiffness

	Summary of procedure

	5 Implementation of the application
	Introduction
	Background of the framework
	Extensions
	The FrameElt class
	The FrameEltCorot class
	Updating of DOFs

	Documentation of the framework
	Documentation of the source code
	Sequence diagrams
	Corotational procedures

	6 Validation of implementation
	Static problems
	Cantilevered beam subjected to end force
	Buckling in axial compression
	Cantilever subjected to end-moment
	Forty-five degree bend

	Dynamic problems
	Centripetal force
	Energy conservation vs. element mass
	Complex problem

	Discussion

	7 Application to aeroelastic analysis of wind turbines
	Introduction
	Techniques for analysis of wind turbines
	Modal approaches
	Finite element method
	Multibody systems
	Discussion

	The effects of large blade deflections
	Modeling the OC4 reference turbine
	Model overview
	Directions in the deformed state

	Simulation results and comparisons
	Startup simulation
	Comparison with other codes
	Remarks

	8 Conclusion
	Summary of thesis
	Conclusion
	Suggestions for further development

	References
	Excerpt of C++ code
	FrameEltCorot.h
	GQuat.h
	NewmarkDOF.h
	Nonlinear timestep function
	Corotational update procedure
	Accumulation of rotations

